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Abstract. Hierarchical clustering is a popular method for grouping to-
gether similar elements based on a distance measure between them. In
many cases, annotations for some elements are known beforehand, which
can aid the clustering process. We present a novel approach for decom-
posing a hierarchical clustering into the clusters that optimally match a
set of known annotations, as measured by the variation of information
metric. Our approach is general and does not require the user to enter the
number of clusters desired. We apply it to two biological domains: find-
ing protein complexes within protein interaction networks and identifying
species within metagenomic DNA samples. For these two applications,
we test the quality of our clusters by using them to predict complex and
species membership, respectively. We find that our approach generally
outperforms the commonly used heuristic methods.
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1 Introduction

Hierarchical clustering is an important tool in many applications. One application
where it has beenparticularly useful is predicting proteinmembership in complexes
using protein-protein interaction (PPI) networks. High-throughput experimental
protocols are producing information on thousands of PPIs [52]. Embedded within
these networks are protein complexes, i.e. stable groups of interacting proteins that
perform some biological function in the cell. Complex membership is known for
some proteins, but even for well-studied species like S. cerevisiae, 70-80% of pro-
teins have no complex annotation according to MIPS [19]. Consequently, compu-
tational methods for determining to which complexes each protein belongs have
recently been developed (e.g. [3, 29, 34, 36]). A common approach to this problem
is to identify clusters in the network [2, 5, 33, 34, 35, 48]. Often these clusters are
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detected by hierarchically clustering the graph [1, 6, 39, 40] based on a topological
distance measure such as the Czekanowski-Dice [6] or Jaccard distances. Complex
memberships are then transferred to unannotated proteins by considering com-
mon known annotations within their clusters [2,28,34]. This leads to the following
computational problem:

Problem 1 (Predicting Protein Complexes). Given a hierarchical clustering of a
PPI network for which protein complex annotations are known for some of the pro-
teins, predict complex membership for the unannotated proteins.

A second application of hierarchical clustering is determining bacterial species for
uncharacterized DNA sequences obtained from environmental samples [44,50,41].
In the expanding field of metagenomics, the composition of microbial communities
is examined by sampling DNA from the environment. A typical diversity study in-
volves targeted 16S rRNA gene sequencing using universal primers, a method that
has successfully been used to describe bacterial communities in environments rang-
ing from the ocean to soil to the human gut [13,16,42]. The standard methodology
for 16S sequence analysis begins with a multiple sequence alignment containing
both the environmental samples and several sequences of known origin. An evolu-
tionary distance is computed between every pair of sequences using a distancemea-
sure such as Jukes-Cantor [23], Kimura 2-parameter [27], or Felsenstein-84 [15].
A hierarchical clustering is then created from these distances, which is analyzed
to identify which operational taxonomic units (OTUs; the more precise analog of
“species” in the bacterialworld) are in the sample. Thus, the approach to this prob-
lem is similar to that for complex prediction from PPI networks: uncharacterized
sequences are clustered (along with some sequences from known species), and are
then assigned to species based on annotated sequences in the same cluster. By esti-
mating the composition of a microbial community, comparisons can be made of the
wealth of organismspresent in different environments, leading to estimations of the
overall diversity. The accuracyof this analysis is vital for researchers examining en-
vironments with unknown composition. This leads to the following computational
problem:

Problem 2 (Predicting Species for Uncharacterized DNA). Given a hierarchical
clustering of DNA sequences, some of which are derived from known species,
predict the species to which the uncharacterized sequences belong and estimate
the number of OTUs in the sample.

In this paper, we give improved methods for applying hierarchical clustering
to both of these applications. In general, hierarchical clustering algorithms are
based on one or two types of operations: top-down splitting or bottom-up merg-
ing. In the network clustering setting, for example, clusters may be split based
on network modularity [35] or minimum cuts [11]. Clusters to merge may be
chosen based on distances such as the Dice coefficient [6], the Jaccard index [21],
or correlation of shortest-path profiles [39], among others. The clustering process
produces a tree ranging from the root (all nodes in one cluster) to the leaves
(the nodes being clustered, each in its own cluster).



402 S. Navlakha et al.

1

2

34

5

6 8

97

w

1 2 3 4 5 6 7 8 9

c

b

x y z

d

a 1♣

2

3♣4♠

5♠

6♦ 8♦

9♦7♦

w

1
♣

2 3
♣

4
♠

5
♠

6
♦

7
♦

8
♦

9
♦

c

b

x y z

d

a
A B

Cut(b,d) = {1,2,3,4,5} {6,7,8,9} Cut(c,x,d) = {1,2,3} {4,5} {6,7,8,9}

Fig. 1. Example PPI network where use of known annotations can produce a better
clustering. (A) The network consists of two dense subgraphs that in most approaches
would result in the hierarchical decomposition shown. By looking at the topology of
the graph, it is reasonable to place proteins {1, 2, 3, 4, 5} into one cluster and proteins
{6, 7, 8, 9} into a separate cluster by choosing cut {b, d}. (B) If some annotations are
known (indicated in the figure by ♣,♠, �), we want to choose a cut that not only
abides by the topology, but also matches the known annotations as closely as possible.
Here, cut {b, d} is not ideal because it places proteins {1, 3} and {4, 5} together, which
have different known annotations (node 2 has no known annotation). The better cut
is {c, x, d}, which induces clusters {1, 2, 3}, {4, 5}, and {6, 7, 8, 9}. A method that only
considers topology will be unable to reconstruct this clustering.

In order to apply most methods for predicting new annotations (either a com-
plex for a protein or a species for a sequence), the hierarchical clustering must be
converted into a flat grouping of the elements. Typically, this is done by choosing
a set of nodes in the tree (called a node-cut) such that the path from each leaf
to the root of the tree passes through exactly one chosen tree node. Each chosen
tree node yields a cluster consisting of all the leaves in the subtree rooted at that
node. We refer to such a flat, non-overlapping grouping of elements simply as a
clustering. To avoid confusion, we refer to hierarchical clusterings as “hierarchical
decompositions.” Some hierarchical decomposition algorithms provide a natural
stopping point that can be used to choose a clustering. Newman’s spectral parti-
tioning [35], for example, is a top-down approach for hierarchically decomposing
nodes in a network that stops splitting clusters when any split would decrease the
modularity of the clustering. Graph summarization [33], a bottom-up approach,
stops merging clusters when a particular cost function is minimized. However,
many algorithms do not have natural stopping points [1, 11, 24]. Instead, they
require the user to estimate the number of clusters beforehand, or they require a
threshold and stop when no split or merge satisfying the threshold can be found.
In general, it is not clear how to choose the number of clusters or an appropriate
distance threshold. Therefore, choosing an appropriate clustering implied by the
hierarchy is generally a stumbling block. In many applications annotations are
known for some of the elements being clustered, and these partial annotations
can help determine which clustering compatible with the hierarchical decompo-
sition is the most biologically reasonable. For example, Figure 1 shows a small
PPI network and its natural hierarchical decomposition. The network topology
alone suggests a different clustering than the one that makes the most sense
when the known annotations are taken into account.
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Our contributions. In this paper, we propose a novel method, VI-Cut, to
choose a clustering from a hierarchical tree decomposition based on how well
the clusters induced by a cut in the tree match known annotations, as measured
by the variation of information (VI, [31]) metric. The cut is chosen such that
each node is placed in a cluster. Hence, nodes with unknown annotations can be
placed together in a cluster with nodes with known annotations. We can thus
test the quality of a clustering based on how well we can use each cluster to pre-
dict annotations for nodes with unknown annotations (e.g. node 2 in Figure 1B).
The VI-Cut method is a very natural approach which gives a principled, mathe-
matically sound way to convert a hierarchical decomposition to a flat clustering.
To prove its generality, we show that it can be successfully applied in two very
different biological problems, and we expect the approach will be applicable to
other domains besides the two considered here.

Improvement in predicting protein complexes. We apply our VI-Cut
method to two different hierarchical decompositions of a PPI network for the
yeast S. cerevisiae. The first hierarchical decomposition is created using the
Czekanowski-Dice distance between network nodes and applying a neighbor-
joining algorithm, following the approach of Brun et al. [6]. The second hier-
archical decomposition is created using graph summarization [33], which was
recently shown [34] to outperform other graph clustering approaches such as
MCL [48], MCODE [2], and Newman’s spectral partitioning [35] at the task
of predicting membership in protein complexes. For both types of hierarchical
decompositions, we compare against the methods proposed by Brun et al. [6],
Dotan-Cohen et al. [12] and also against an approach that chooses statistically
enriched clusters. We also compare against the clustering induced by the nat-
ural stopping point of the graph summarization algorithm. Unlike any other
method, the VI-Cut produces clusters which perform well in terms of accuracy
and coverage of predicted annotations on both trees.

Improvement in predicting species. We also applied VI-Cut to predict species
annotations for a simulated metagenomic sample created from 1677 real 16S rRNA
gene sequences. The sample contains 49 species in various proportions. DOTUR
[41] is the most common software for dividing input sequences into OTUs. DOTUR
takes as input a distance matrix (derived from a multiple sequence alignment and
distance correction) and a distance threshold that defines when to stop merging
clusters. We replicated six different methodologies for creating input to DOTUR
that have been used in recent 16S rRNA studies [16,42,25,9,44,50]. Each method-
ology uses a different multiple sequence alignment algorithm, distance correction,
and distance threshold. None of these methods, however, take known OTU anno-
tations into account. We test the quality of the VI-Cut clusters and the clusters
produced by each of these six methodologies by using them to predict OTUs. In
each case, the clusters created by VI-Cut produce predictions with about the same
accuracy as the previous methodologies, but with large increases in coverage. Fur-
ther, the VI-Cut clusters provide a much better estimate of the true number of
species embedded within the data set.
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1.1 Related Work: Semi-supervised Clustering

Several previous attempts have been made to apply semi-supervised clustering
to gene expression data. To produce a flat clustering from a hierarchical tree
decomposition derived from expression data, several methods assign an enrich-
ment score to each internal tree node based on the partial, known annotations,
signifying the functional coherence of the cluster [7, 45, 47]. Clusters are then
chosen by iteratively choosing high-scoring subtrees, subtrees with uniquely en-
riched annotations, or other similar heuristics. Recently, Dotan-Cohen et al. [12]
proposed a semi-supervised approach based on choosing a subset of edges in the
tree decomposition. Each chosen edge induces a connected component in the
tree which corresponds to a cluster. Their goal is to choose the minimum num-
ber of edges such that each cluster consists of genes which all share at least one
annotation, allowing genes that are unannotated to take on any annotation.

All of the above approaches differ from VI-Cut in the objective function used
to produce a clustering from the tree and are only applied to clusterings derived
from gene expression. No previous studies have predicted OTU annotations us-
ing a semi-supervised approach. Brun et al. [6] use PPI network data to build a
hierarchical tree decomposition and extract clusters which have a majority an-
notation (computed using the known annotations). Other heuristics have been
proposed to choose a clustering from a network decomposition [39,1,40], however,
they either rely on manual inspection of the hierarchical decomposition [39], or
require a similarity threshold to be input by the user [1, 40, 4].

2 Methods

2.1 Finding the Clustering That Best Matches Known Annotations
(VI-Cut)

Criteria for choosing a clustering. A hierarchical decomposition is specified
by a tree T where the leaves correspond to the elements being clustered. A
node-cut is a subset K of tree nodes such that the path from every leaf of T
to Root(T ) passes through some node in K and such that there is no pair of
nodes x, y ∈ K where x is an ancestor of y. Every node-cut K of the tree
induces a clustering CK : each node x ∈ K yields one cluster that contains the
elements corresponding to the leaves in the subtree rooted at x. Despite the
simple structure, there are an enormous number of possible node-cuts even for
short, binary trees. A complete binary tree of height 7, for example, induces
exactly 44, 127, 887, 745, 906, 175, 987, 802 (i.e. 4 × 1022) possible clusterings.

We assume that some (but not all) of the elements that we are interested
in clustering are already annotated. Let D be the partial clustering defined by
these known annotations by grouping those with the same annotation together.
Among all the possible choices for a node-cut K, we desire the one that induces
a clustering CK that best matches the known partial information D. A natural
measure for how well CK agrees with D is given by the variation of information
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(VI, [31]) distance metric between the two clusterings:

V I(CK , D) .= H(CK) + H(D) − 2I(CK , D) . (1)

Other methods have been used to measure the distance between clusterings,
including pair-counting methods, such as the Rand [38], Mirkin [32], and Jac-
card [21] indices. VI is attractive because it is a metric, information-theoretic,
and, crucially, can be rewritten such that the total distance between cluster-
ings is the sum of each cluster’s contribution. Drawbacks associated with other
measures are discussed by Meila [31].

In the definition of VI, the clusterings CK and D are represented as discrete
random variables taking on |CK | and |D| values, respectively (one value for
each cluster in the clustering). Each value corresponds to the probability that a
random element chosen belongs to that cluster. This probability is computed by
dividing the number of elements in the cluster by the total number of elements. In
both clusterings, we ignore unannotated proteins. H(X) denotes the entropy of
random variable X . Intuitively, the entropy of a clustering tells us how uncertain
we are about which cluster a randomly chosen element lies in. I(X, Y ) denotes
the mutual information between the random variables X and Y . Intuitively,
the mutual information gives the reduction in uncertainty regarding the cluster
assignment of an element in D if its assignment in CK is given, summed over all
elements. In the following, we exploit the decomposability property of VI. Other
properties of VI are explored by Meila [31].

Because I(X, Y ) = H(X) + H(Y ) − H(X, Y ), where H(X, Y ) is the joint
entropy, we can rewrite V I(CK , D) to be 2H(CK , D) − H(CK) − H(D). Over
possible choices of K, H(D) remains constant. Therefore, minK V I(CK , D) is
achieved for the same K that minimizes

min
K

2H(CK , D) − H(CK) . (2)

To find a node-cut that minimizes this value, we assign a quality score q(x)
to each node x in the hierarchical decomposition T . The function q(x) will be
chosen so that the sum of the quality scores for nodes in a node-cut K will equal
2H(CK , D) − H(CK). Define L(x) to be the set of leaves in the subtree rooted
at node x that are annotated with some known annotation, and A(d) to be the
set of leaves (from the whole tree) that are known to have annotation d. Define
n = |L(Root(T ))|, the number of elements that have a known annotation. We
then set q(x) to be

q(x) .= p(x) log p(x) − 2
∑

d∈D

p(x, d) log p(x, d) , (3)

where the probabilities are defined as

p(x) = |L(x)|/n , (4)
p(x, d) = |L(x) ∩ A(d)|/n . (5)
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The value p(x) is the probability that an element with a known annotation would
fall into the cluster induced by x. The joint probability p(x, d) is the probability
that a random annotated element falls into cluster x and has annotation d. Note
that H(CK) = −∑

x∈CK
p(x) log p(x) and H(CK , D) = −∑

x,d p(x, d) log p(x, d)
(x ∈ CK , d ∈ D) so that (3) implies that

∑
x∈K q(x) = 2H(CK , D) − H(CK),

which is the value we are attempting to minimize in (2). Therefore, the node-cut
whose quality scores sum to the smallest number corresponds to the clustering
that best matches the known annotations according to the VI distance.

Algorithm to find the best cut in a hierarchical tree decomposition.
We can find a node-cut K in a tree so that

∑
x∈K q(x) is minimized (a “min-

node-cut”) using dynamic programming. Let Children(x) denote the children
of a tree node x. We can compute the minimum-weight node-cut recursively:

CutDist(x) = min

{
q(x) case I (default if x is a leaf)∑

y∈Children(x) CutDist(y) case II
(6)

The min-node-cut of a subtree S either chooses the root x of S with a weight of
q(x) (case I) or it does not choose the root and chooses instead the min-node-cut
of each of the subtrees rooted at the children of x (case II). If x is a leaf node,
the min-node-cut defaults to q(x). Therefore, the value of CutDist(Root(T ))
is weight of the smallest weight node-cut. To find the actual choice of nodes
corresponding to the node-cut of this weight we can backtrack through which
cases occurred during the recursive calls. We have flexibility in how we break
ties when the value of case I equals the value of case II. If we always break
ties in favor of case I, we will choose the highest min-node-cut in the tree.
Alternatively, if we always choose case II, we choose the lowest min-node-cut in
the tree. This algorithm does not require the user to enter the number of clusters
to return.

2.2 Handling Multiple Annotations on Some Elements

Up to this point, we have assumed that each element has at most one known
annotation. This is true by definition in the OTU clustering problem and, of
all yeast proteins annotated with some MIPS complex, only 11% are annotated
with more than one complex. Hence, for the applications we consider in this
paper, the assumption of a single annotation on each element is mostly justified.
On the other hand, multiple annotations are present in other applications. They
can be used to model either uncertainty in the truth or genuine membership in
multiple clusters. A natural way to handle multiple annotations on each element
is to look for the node-cut K that induces a clustering CK that minimizes the
VI distance between CK and the closest clustering compatible with a choice of a
single annotation for each element. Unfortunately, even computing the minimum
distance between a given clustering C and a clustering compatible with a set of
annotations is NP-complete.
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Definition 1 (annotation collection). Given a set of elements E and a set
of annotations L, an annotation collection is a collection of subsets A� ⊆ E for
each � ∈ L such that every e ∈ E is in at least one A�.

An annotation collection defines which annotations apply to each of the elements
of E. Each A� consists of the elements that are annotated with �. An annotation
collection implicitly specifies many possible clusterings for E: a choice of a single
annotation �(e) for every e ∈ E such that e ∈ A�(e) induces a clustering that
groups all elements with the same annotation together. Let Compatible(L) be
the set of clusterings induced in this way by an annotation collection L. The
natural measure of how well a given clustering C matches an annotation collec-
tion L is to compute the minimum VI distance between C and some clustering
in Compatible(L). Formally, we define:

Problem 3 (Min-VI Annotation Choice). Given a set of elements E, a clus-
tering C of E, an annotation collection {A� ⊆ E : � ∈ L} over a set of annotations
L, compute minD∈Compatible(L) V I(C, D).

Theorem 1. The decision version of Min-VI Annotation Choice is NP-
complete.

Proof. We reduce from Exact Cover by 3-Sets (X3C) [17]. Let I be an
instance of X3C specified by a set XI and a collection of 3-tuples RI = {(x, y, z) :
x, y, z ∈ XI}. An I is a “yes” instance if there is a subcollection M of RI such
that every element in XI belongs to exactly one set in M . We construct an
instance of Min-VI Annotation Choice as follows. Take E = XI , and let
C = {E} be the clustering consisting of a single cluster. For every (x, y, z) ∈
RI , we create an annotation A� = {x, y, z} containing only those 3 elements.
The annotation collection LI consists of these A� sets. We show that there is
a clustering D ∈ Compatible(LI) with V I(C, D) ≤ log(|E|/3) if and only if
I belongs to X3C. Because C = {E}, we have H(C) = 0, and V I(C, D) =
2H(C, D)−H(C)−H(D) = H(D). If there is an exact cover D, it consists of a
set of |E|/3 clusters of size 3, yielding H(D) = −(|E|/3) [(3/|E|) log(3/|E|)] =
log(|E|/3). If there is no exact cover, then any clustering D induced by L must
contain some clusters of size ≤ 2. Because −(3/n) log(3/n) < −(2/n) log(2/n)−
(1/n) log(1/n) < −(3/n) log(1/n) for all n, the presence of clusters of size 2 or 1
yields a larger entropy than grouping those elements into sets of size 3. Hence,
if there is no exact cover, H(D) > log(|E|/3) for all D induced by L. In fact,
it can be shown that the difference between the minimum VI distance for an
instance with an exact cover and an instance without an exact cover is at least
1/|XI |, so this difference can be encoded using a polynomial number of bits. �
Problem 4 (Min-VI Tree Cut With Annotation Choice). Given a set of
elements E, a hierarchical decomposition T of E, and an annotation collection
L = {A� ⊆ E : � ∈ L} over a set of annotations L, compute minCK ,D V I(CK , D),
where K ∈ Cut(T ) and D ∈ Compatible(L).

Theorem 2. The decision version of Min-VI Tree Cut With Annotation
Choice is NP-complete.
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Proof. As above, we reduce from Exact Cover by 3-Sets (X3C) [17] (using
the same notation). We construct an instance of Min-VI Tree Cut With
Annotation Choice as follows. Take E = XI ∪ Y where Y is a set of new
elements such that |Y | = 2|XI | and let the hierarchical decomposition T have a
star topology (all leaves connected to the root) with the elements of E as leaves.
For every (x, y, z) ∈ RI , we create an annotation A� = {x, y, z} containing only
those 3 elements. The annotation collection LI consists of these A� sets and Y .
We show that there is a clustering D ∈ Compatible(LI) and node-cut K for T
which induces a clustering CK , with V I(CK , D) ≤ 1/3 log(|E|/3)+2/3 log 3/2 if
and only if I belongs to X3C. It is easy to verify that if there is an exact cover D′

then with D = D′ ∪ {Y } and CK = {E} we get V I(CK , D) = 1/3 log(|E|/3) +
2/3 log 3/2. Conversely, if there is no exact cover, then any clustering D induced
by L must contain some clusters of size ≤ 2. Using a similar argument as before,
we can show that V I(D ∪ {Y }, {E}) > 1/3 log(|E|/3) + 2/3 log 3/2. The only
other node-cut possible is the one which puts every node in E in a separate
cluster and the corresponding optimal annotation choice gives a VI distance
≥ 2/3 log |E| − 2/3 log 3/2 > 1/3 log(|E|/3)+ 2/3 log 3/2 (in the ideal case every
element in RI will have its own annotation), for |E| > 2. Note that the difference
between the minimum VI distance for an instance with an exact cover and an
instance without an exact cover is still ≥ 1/|XI | and hence can be encoded using
a polynomial number of bits. �
Given these hardness results, we are forced to consider heuristics to handle the
few proteins that belong to multiple MIPS complexes. We cannot use equa-
tion (5) directly to compute p(x, d) because it will not yield a probability distri-
bution. Instead, if protein i has ki annotations, we count each of its annotations
as 1/ki. In other words, p(x, d) = (1/n)

∑
i∈L(x)∩A(d) 1/ki. This way p(x, d) de-

fines a probability distribution even if proteins belong to multiple complexes,
and we can use the method of the previous section as a heuristic to find a clus-
tering that matches the given annotations well. This is the approach we follow
for the complex membership prediction experiments below.

2.3 Predicting New Annotations

We can test the quality of our clusters by using them to make new predictions
for protein or sequence membership within complexes or OTUs. A common ap-
proach, here called “majority,” transfers an annotation A to every unannotated
element in a cluster if more than 50% of the annotated elements in the cluster
are annotated with A. If no annotation exists on more than 50% of the anno-
tated elements, no predictions are made. Clusters consisting of a single annotated
element are ignored.

To test the efficacy of the various clustering methods, we omit the known an-
notations from a fraction of the elements. The omitted annotations are the “test
set,” and the remaining annotations are the “training set.” Each method finds its
clusters based only on the annotations in the training set. We vary the size of the
training set from 10% to 90% of the total number of elements with known annota-
tions, chosen randomly. For each element x in the test set, the majority annotation
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is computed and then transferred to x as a predicted annotation. If multiple anno-
tations are transferred, each transferred annotation is counted as one prediction. A
prediction is correct if the protein or sequence is known to belong to that complex
or OTU, and incorrect if it is only known to belong to other complexes or OTUs.
Naturally, given the incomplete state of knowledge, some “incorrect” predictions
may in fact be correct. For each size of the training set, we measure performance
by the accuracy and coverage of the predictions made over 500 random samplings.
(For the Snip approach we only took 10 samplings). Accuracy is the probability
that a predicted annotation is correct. Coverage is the average number of elements
in the test set for which a correct annotation was made divided by the total num-
ber of elements in the test set.

2.4 Application to Predicting Protein Complex Annotations

Protein networks. We constructed a protein interaction network for
S. cerevisiae using all edges in the IntAct [26] database. This network contains
5,492 proteins with 40,332 interactions. For the hierarchical decomposition, we
consider only the largest connected component of the network (which we re-
fer to as Yppi), which contains 5,462 proteins and 40,311 interactions. Most of
these interactions were determined using yeast two-hybrid or TAP assays, while
a smaller number were derived from traditional, low-throughput experiments.
Interactions obtained from high-throughput assays, however, are typically very
noisy with potentially a 90% false positive rate [20]. Hence, we created a high-
confidence yeast interaction network from IntAct that only includes edges sup-
ported by at least two experiments. The high-confidence network contains 2,604
proteins and 8,341 interactions, fewer than half the proteins of the Yppi net-
work. Its largest connected component, which we call Yhigh-conf, contains 2,378
proteins and 8,189 interactions.

Protein complexes. Annotations for yeast complexes are from MIPS [19], ig-
noring the “550” section of the catalog, which represent computationally inferred
complexes. This set of complexes has been widely used to assess computational
methods [22, 51, 37]. To make the most specific predictions possible we use the
lowest-level complexes in the catalog. Of the 5,462 and 2,378 proteins in Yppi
and Yhigh-conf, 1191 and 930 proteins, respectively, have some known complex
annotation. Of the 267 complexes, 266 and 230 are represented by at least one
protein in the Yppi and Yhigh-conf network, respectively. The average number of
proteins per complex in Yppi is 5.2 (min = 1, max = 78), and in Yhigh-conf is
4.7 (min = 1, max = 67).

Hierarchical decomposition of the PPI network. We use two approaches
to generate two different hierarchical tree decompositions of a PPI network.
The first tree, called TDice, is built by applying the neighbor-joining algorithm
BIONJ [18] to distances between proteins computed by the Czekanowski-Dice [6]
distance. Self-loops were added to each protein to decrease the distance be-
tween proteins that interact. This is the approach followed by Brun et al. [6] for
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predicting the cellular function of proteins. The second tree, called TGS, is built
using the greedy graph summarization algorithm (GS, [33,34]). The GS process
has a natural stopping point (when there is no longer any compression benefit
to merging two nodes). We modified the algorithm so that it continues to merge
the pair of nodes that give the least negative benefit until all nodes are placed
in a single cluster.

Comparison methods. For the TDice tree, we compare the VI-Cut approach
against three other methods. Brun et al. [6] filter false edges from their PPI
network by removing proteins which take part in fewer than 3 interactions.
In our setting, we simply use the high-confidence network, Yhigh-conf. Brun
et al. [6] extract clusters from their hierarchical network decomposition by select-
ing the largest subtrees that contain at least 3 proteins that all share the same
annotation and that make up the majority annotation in the subtree. Dotan-
Cohen et al. [12] choose the minimum number of edges in the tree to “snip” such
that each cluster induced by the snip contains proteins that all share at least
one annotation. Another popular approach involves using the hypergeometric
P-value to assign an enrichment score to each internal node in the tree. We then
do a breadth-first walk down the tree from the root, choosing clusters if they are
enriched past a pre-defined threshold (P ≤ 0.01). The computed P-values are
Bonferroni corrected to account for multiple-testing. We refer to these methods
by Brun, Snip, and Enrich, respectively. For Brun and Enrich, if a protein is not
assigned to any chosen subtree, it is placed in a cluster by itself. When consid-
ering TGS, we also compare with the clustering induced by the natural stopping
point of the unmodified greedy GS process. For the VI-Cut on both trees we
select the lowest min-node-cut.

2.5 Application to Predicting Operational Taxonomic Unit (OTUs)

Creation of simulated 16S sample. We obtained 1860 partial 16S rRNA gene
sequences from the Ribosomal Database Project II (release 9.57 [8]) with com-
plete taxonomic identification. These sequences were then screened for conflict-
ing annotation information using the RDP Bayesian classifier [49], and selected
for length and quality, resulting in a final set of 1677 sequences. This dataset
is designed to simulate a microbial environment of moderate complexity span-
ning seven phyla with several dominant and rare species. Nine species are only
observed once in the data, while eight species have more than 90 observations.
Though no single species represents more than 6% of the sample, 66% of the sam-
ple is Proteobacteria with roughly equally distributions of Alpha-, Beta-, and
Gammaproteobacteria. The other 34% of the sample comes from the following
six phyla: Actinobacteria, Bacteroidetes, Chlamydiae, Fibrobacteres, Firmicutes,
and Spirochaetes. By using real 16S rRNA sequences, we accurately model the
nucleotide divergence we expect to see within any species. This approach has
been successfully used to provide high-quality benchmarks for metagenomic as-
sembly and gene-finding [30].
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Hierarchical decomposition of OTU sequences. Sequences were oriented
and subsequently aligned using a multiple-sequence alignment (MSA) algorithm
(such as ClustalW [46], NAST [10], or MUSCLE [14]). MSAs were trimmed
so that each sequence spanned the entire alignment. From the alignment, we
then used DNADIST with default parameters from the PHYLIP package [15]
to compute distance matrices using the Felsenstein-84 [15] or Jukes-Cantor [23]
distances. The distance matrices were then fed into DOTUR [41], an OTU clus-
tering algorithm, which assigns sequences to OTUs using the furthest-neighbor
algorithm. The clusters returned by DOTUR depend on a user-defined distance
threshold. If the threshold is set to 0.03, for example, an OTU cluster is defined
as a set of sequences which are each no more than 3% different from each other.
We modified DOTUR to output the full hierarchical tree decomposition, which
we use to find the VI-Cut clusters or OTUs based on partial, known annotations.

Comparison methods. We consider six recently published methods for identi-
fying OTUs that illustrate the current range of OTU-analysis used in the field of
metagenomics. These methods differ in the MSA, distance correction, and dis-
tance threshold used to define OTUs. The six methods we consider are: Kennedy
et al. [25], Fulthorpe et al. [16], Schloss et al. [42], Corby-Harris et al. [9], Sogin
et al. [44], and Warnecke et al. [50]. We refer to each by their first author. See
Table 1 for their parameters. The Corby-Harris approach yielded nearly identi-
cal results as the Kennedy method, and is therefore omitted from the table. We
compare the VI-Cut clusters, obtained using the highest min-node-cut, with the
threshold-derived clusters of these six methodologies based on their predictive
ability and estimation of the number of OTUs present in the sample.

3 Results and Discussion

3.1 VI-Cut Yields Better Predictions for Protein Complexes

We created a hierarchical decomposition TDice based on the Czekanowski-Dice
distance between proteins in Yhigh-conf, following the same procedure described
by Brun et al. [6] (see Section 2.4). From TDice, for various sizes of training sets,
we compute four clusterings derived from the methods of Brun et al, Dotan-
Cohen et al., the Enrich approach described in Section 2.4, and the VI-Cut
approach described in Section 2.1. Using these clusterings, we predict member-
ship in MIPS protein complexes using the “majority” annotation transfer rule.
The accuracy and coverage of these predictions are shown in Figure 2A. The x-
axis of these plots gives the percentage of annotations that were excluded from
the annotation set when choosing a clustering; larger values indicate tests where
there are fewer known annotations. The y-axis shows the accuracy and coverage
of the predictions — in both cases, larger numbers are preferred.

While both Brun et al. and VI-Cut take into account the known annotations
when defining their clusters from the tree, the cut chosen by minimizing the
VI distance is able to make considerably more accurate predictions than the
clusters created by the Brun et al. heuristic. Over all tested sizes of training
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Fig. 2. Accuracy and coverage for protein complex predictions for various sizes of
training sets on (A) the TDice tree, and (B) the TGS tree

set, the predictions made by the VI-Cut approach are more accurate by at least
22 percentage points. Further, when the number of known annotations is very
small, the improvement of the VI-Cut method is even greater. At the fewest
number of known annotations (90% annotations excluded) the VI-Cut method
is almost 30% more accurate in its predictions. The VI-Cut method also makes
more correct annotations (larger coverage) over the entire range of sizes for
the training set. The Enrich approach is even less accurate than Brun et al.
and with a significantly lower coverage. This is largely because the enrichment
approach returns a few number of large modules for which very few predictions
can be made. The Snip approach yields a higher coverage than VI-Cut but with
a greater loss in accuracy.

The robustness of the VI-Cut approach is not limited to hierarchical decom-
positions that are derived from the Czekanowski-Dice distance. We repeated the
prediction experiments using the tree TGS built by the greedy graph summariza-
tion (GS) technique. Figure 2B shows the accuracy and coverage achieved by the
four previously mentioned methods, and the clustering induced by the natural
stopping point of the GS procedure. The clusters produced by the natural stop-
ping point are the same regardless of the training set because annotations are
not considered when the GS algorithm is applied. Accuracy and coverage can
still vary, however, as predictions in majority annotations change within each
cluster. As shown in Figure 2B, the predictions made by the VI-Cut are almost
always more accurate than every other method. The Snip method has a larger
coverage, but this is negated by its poorer accuracy. Interestingly, the Enrich ap-
proach initially has an increase in recall with less training data before decreasing
as one would expect. This is probably because Enrich returns substantially fewer
modules as the training set size increases. As a result, the most reasonably-sized
clusters are found in the middle ranges.

In general, the predictions made on TGS are much more accurate than those
made on TDice. This suggests that the hierarchical decomposition defined by
GS better represents the protein complexes within the PPI. Interestingly, for
TGS, the accuracy of all approaches except for Snip slightly increases as less
training data is available. This may imply that with smaller training sets, only
easy predictions are made. As the size of the training set increases, however,
more difficult predictions are attempted, for which accuracy is generally lower.
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Fig. 3. Accuracy and coverage comparison of the (A) Kennedy and (B) Warnecke
OTU clustering methods. Although Kennedy and Warnecke produce the same clusters
regardless of the training set, the predictions they make vary due to differences in the
majority annotation within each cluster.

Further, for TGS, Enrich especially benefits by choosing smaller, more reasonable
clusters. Overall, VI-Cut makes accurate predictions covering many proteins on
both trees, unlike any other method.

Variations. Results on Yppi echo the results obtained on the Yhigh-conf net-
work. Further, VI-Cut continued to outperform the other methods when using
two other annotation transfer rules: pluarity (transfering the most common an-
notation), and hypergeometric enrichment [43]. However, the performance of
the plurality and hypergeometric rules was generally worse than the majority
rule.

3.2 VI-Cut Yields Better Prediction of OTUs

We apply the same tests to predict OTU annotations for 16S DNA sequences.
Predictions were made in the same way as with protein complexes, but instead of
complex-membership annotations, we use known OTU annotations and transfer
them to sequences with no OTU annotation. We again use the majority anno-
tation transfer rule. We compare the predictive ability of the VI-Cut method
for clustering metagenomic samples with previously published methods, includ-
ing Kennedy [25], Fulthorpe [16], Schloss [42], Corby-Harris [9], Sogin [44], and
Warnecke [50], described in Section 2.5. We also compare each method’s ability
to estimate the true number of OTUs present in the sample. The Corby-Harris
approach resulted in nearly identical predictions and estimations as the Kennedy
method. We therefore omit discussion of those results.

The VI-Cut generally outperforms each of these methods. Of the methods
we compared against, Kennedy and Warnecke had the best overall coverage and
accuracy, respectively. Figure 3 compares these methods with the VI-Cut. Com-
pared to Kennedy, the VI-Cut mostly makes more accurate predictions, and cov-
ers a larger number of OTUs. Although Warnecke makes slightly more accurate
predictions (average gain of 2%), the VI-Cut has significantly greater coverage.
For example, with 80% of the sequences in the test set, the VI-Cut makes correct
predictions for 1256 sequences, compared to just 1093 by Warnecke.
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Table 1. Comparison of VI-Cut with other OTU clustering approaches applied to trees
constructed from DOTUR with various parameters and distance thresholds, shown in
parentheses. Performance is presented for 90% annotations excluded, average over 100
trials. # OTUs shows the average number of OTUs predicted by each method. The
correct number of OTUs is 49. Acc. and Coverage show the accuracy and coverage for
each approach. Avg. VI shows the VI distance of the clustering to the actual OTUs.

Method # OTUs Acc. Coverage Avg. VI

Tree 1: ClustalW, Felsenstein
Kennedy (0.03) 70 97.6 85.5 0.087
VI-Cut 42 96.9 89.4 0.050

Tree 2: NAST, Felsenstein
Fulthorpe (0.00) 386 98.9 49.6 0.646
VI-Cut 45 95.6 87.9 0.073

Tree 3: NAST, Jukes-Cantor
Schloss (0.03) 99 97.5 80.5 0.157
VI-Cut 42 95.6 88.2 0.073

Tree 4: NAST, Jukes-Cantor
Warnecke (0.01) 185 99.2 71.1 0.320
VI-Cut 42 95.6 88.2 0.073

Tree 5: MUSCLE, Jukes-Cantor
Sogin (0.03) 96 97.5 78.2 0.190
VI-Cut 43 96.1 88.2 0.046

For all six trees, we find that the VI-Cut yields not only a closer VI distance to
the true clustering, but also a much closer approximation to the true number of
OTUs. There are 49 true OTUs in the sample and the VI-Cut estimates between
42 and 45, depending on which tree is used. This is a far better and more robust
estimate of the true diversity of the population than the estimates of the other
methods, which range between 70 and 386. The number of OTUs predicted are
shown for test set size equal to 90% in Table 1. While it is true that our method
starts with known annotations that hint at the number of true OTUs present in
the sample beforehand, the average number of unique OTUs in the training set
was only 35. Yet, VI-Cut was still able to identify that other OTUs exist, based
on their topological non-compatibility with known annotations in the tree.

4 Conclusion

We presented a framework for finding cut-induced clusters in hierarchical tree
decompositions that optimally match a partial set of known annotations, as mea-
sured by the variation of information [31]. Our VI-Cut method makes improved
predictions of proteins’ membership in complexes and species annotations for
metagenomic samples. While we showed that a generalization that allows mul-
tiple annotations per element is NP-hard, several open problems exist, such as
providing an approximation guarantee on our heuristic that handles multiple an-
notations, and extensions that allow clusters to overlap. Nonetheless, the success
of VI-Cut in two very different domains is evidence of the technique’s generality.
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