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Neural arbors (dendrites and axons) can be viewed as graphs connecting the

cell body of a neuron to various pre- and post-synaptic partners. Several con-

straints have been proposed on the topology of these graphs, such as

minimizing the amount of wire needed to construct the arbor (wiring

cost), and minimizing the graph distances between the cell body and synap-

tic partners (conduction delay). These two objectives compete with each

other—optimizing one results in poorer performance on the other. Here,

we describe how well neural arbors resolve this network design trade-off

using the theory of Pareto optimality. We develop an algorithm to generate

arbors that near-optimally balance between these two objectives, and

demonstrate that this algorithm improves over previous algorithms. We

then use this algorithm to study how close neural arbors are to being

Pareto optimal. Analysing 14 145 arbors across numerous brain regions,

species and cell types, we find that neural arbors are much closer to being

Pareto optimal than would be expected by chance and other reasonable

baselines. We also investigate how the location of the arbor on the Pareto

front, and the distance from the arbor to the Pareto front, can be used to clas-

sify between some arbor types (e.g. axons versus dendrites, or different cell

types), highlighting a new potential connection between arbor structure and

function. Finally, using this framework, we find that another biological

branching structure—plant shoot architectures used to collect and distribute

nutrients—are also Pareto optimal, suggesting shared principles of network

design between two systems separated by millions of years of evolution.
1. Introduction
Both man-made and biological transport networks face trade-offs in their

design. While resources can be spent to increase the speed or reliability of

transport, this often comes at a cost. For example, in road networks, users

wish to minimize the travel time to get from one point in a city to another,

but this goal conflicts with the practical need to minimize costs in building

infrastructure. In such cases, engineers typically seek to design network

topologies that achieve the best ‘bang for the buck’. Here, we analyse how

well neural arbors resolve a similar performance-versus-cost trade-off.

Neural arbors (dendrites and axons) can be viewed as transport networks

rooted at the cell body that process and relay information from one neuron to

another [1]. Prior work has proposed competing constraints on the topology

of these networks [2]. For example, for both dendrites and axons, the principle

of wiring economy states that the total length of an arbor should be minimized

[3–8]; total wire is a measure of network cost and is especially important when

space is limited or when wire is a commodity [9]. On the other hand, Cajal’s

principle of conduction delay states that, for axons, the distance or time

required to propagate an action potential from the soma (cell body/root) to

downstream post-synaptic partners should be minimized for efficient signal

propagation [10]. For dendrites, minimizing conduction delay similarly

allows for efficient propagation of dendritic action potentials [11] or back-

propagating action potentials [12], and it minimizes the effects of attenuation

(weakening of the signal as it travels from a synapse to the soma) [13].
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Figure 1. Illustration of Pareto optimal trees and the Pareto front. (a) For a given set of points (green), there are several possible trees that can be formed, each
optimizing wiring cost and conduction delay differently. The black node indicates the root (cell soma) of the arbor, and the red points indicate branch points. The
Steiner tree minimizes wiring cost. The Satellite tree minimizes conduction delay. Intermediate trees lie in between. (b) The Pareto front defines a set of trees for
which improving upon one objective requires a loss in the other objective. The value of a [ [0, 1] indicates a prioritization weight that the arbor places on one
objective versus the other. We evaluate how Pareto optimal a given tree (red ‘X’) is by computing the distance from that tree to the Pareto front. (c – h) Example
Pareto optimal trees generated by our greedy algorithm using different values of a. The black dot is the soma, the green dots are synapses, brown dots are Steiner
points and red lines are edges. The axes are coordinates, in micrometres.
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The two topologies that minimize wiring economy and

conduction delay, respectively, are often different (figure 1a).

A Steiner tree [14] minimizes wiring economy, but

this structure could have poor conduction delay for some

nodes. On the other hand, the Satellite tree, an arbor that

connects the cell body directly to each synaptic partner via a

straight line would optimally minimize conduction delay,

but this structure would be very inefficient for wiring

economy.

Here, we use the theory of Pareto optimality to analyse

how well neural arbors resolve this network design trade-

off. Intuitively, a network is Pareto optimal if there does

not exist an alternative topology that improves on one

objective without hurting the other. Given enough evolution-

ary pressure and genetic diversity, we hypothesize that
mechanisms generating suboptimal topologies would be

eliminated from the population [15]. The only topologies

that would remain in the population are those that lie

on the Pareto front, consisting of all topologies that are

Pareto optimal.

We formalize this problem, develop a graph-theoretic

algorithm to generate close to Pareto optimal topologies,

and we evaluate how well neural arbors come to realizing

Pareto optimality. In particular, we analysed the structure

of 14 145 arbors from a variety of species, cell types, and

brain regions and find that most arbors lie on or very close

to the Pareto front, and that this is highly unlikely to occur

by chance (as measured by three baseline graph models

that do not seek to directly optimize either wiring cost or

conduction delay). One advantage of this approach is that
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each individual arbor can be associated with a single par-

ameter (a [ [0, 1]), indicating how the arbor weighs or

prioritizes each objective. We find that the a values can be

used to classify some functional categories of neurons

based on their structure (e.g. axons versus dendrites, or

different cell types or neurotransmitter types). Finally, to

show the generality of this result to other biological

branching structures, we re-analyse tracings of hundreds of

plant shoot architectures and find that plants are also

Pareto optimal. To our knowledge, this is the first quantified

comparison between plant architectures and neural arbors

based on their ability to trade-off two common network

design criteria.

For additional related work in the study of neural and

plant arbors [3–5,7,8,10,16–31] and theoretical computer

science [32–39], see the electronic supplementary material.
Soc.B
286:20182727
2. Theory
(a) A framework for analysing neural arbors as

transport graphs
As input, we are provided a set of points P ¼
{p1, p2, , pn; r} [ R3. The points pi represent the three-dimen-

sional locations of the n synapses that the arbor connects to

(pre-synaptic for dendrites, and post-synaptic for the axon).

The point r represents the location of the cell body. Our

goal is to output a tree TP ¼ (VP , EP) rooted at r that connects

the points pi, where VP contains all points in P and can

include additional branch points not present in the input

for more efficient connectivity. The edges EP # VP � VP are

such that TP is a tree, i.e. it is connected with no cycles.

Neural arbors typically do not pre-define the precise locations

of synaptic contacts ahead of time, but rather connect to

potential partners as they grow [40,41]. Our model is not

meant to characterize the process by which neural arbors

grow and branch. Rather, given how a neural arbor branched,

our model evaluates how optimal the arbor morphology was

compared to all other possible morphologies that could have

been used to connect the cell body to the synapses pi.

We evaluate the wiring cost and conduction delay of the

arbor as follows. For edge (u, v) [ EP , define the edge length,

l(u, v) to be the Euclidean distance between u and v. For two

points u, v [ VP , define the graph distance d(u, v) to be the

length of the shortest path from u to v using the edges EP .

The wiring cost is the total length of all edges in the tree:

W(TP) ¼
X

(u,v)[EP

l(u, v): (2:1)

The conduction delay is the sum of the graph distances from

the root to each synapse:

D(TP) ¼
X

pi[Pn{r}

d(r, pi): (2:2)

The tree that minimizes wiring cost alone is the Steiner tree

(figure 1a), which, unlike a minimum spanning tree, allows

for branch points that may help reduce the total length

of the arbor. There are efficient algorithms to compute a

minimum spanning tree, but finding the optimal Steiner

tree for a given set of points in three-dimensional space is

NP-hard [42]. The tree that minimizes the conduction delay

alone is the ‘Satellite’ tree, where each synapse is connected
via a straight line to the root of the tree (figure 1b). We com-

pare trees built on the same set of input points, and thus we

do not need to normalize either objective by the number of

synapses, n.
(b) Defining Pareto optimal trees
It is generally impossible to find a tree that simultaneously

minimizes both wiring cost and conduction delay because

such a tree may not exist. One way to define the concept of

an ‘optimal tree’ then is using the theory of Pareto optimality.

Intuitively, a tree is Pareto optimal if no other tree on

the same set of points has a lower value for both objectives,

or a lower value for one objective without hurting the

other objective. Formally, we say a tree T1 partially dominates
a tree T2 (denoted T1 W T2) if at least one of the two

conditions hold:

(1) W(T1) �W(T2) and D(T1) , D(T2); or

(2) W(T1) , W(T2) and D(T1) � D(T2)

This means that T1 performs equal to or better than T2 no

matter how one prioritizes the two objectives. We say a tree T
is Pareto optimal if it is not partially dominated by any other

tree on the same set of points [43].

To generate Pareto optimal trees, we propose a simple

linear interpolation between the two objectives, where the

goal is to minimize the Pareto cost:

min
TP

aW(TP)þ (1� a)D(TP), (2:3)

where TP is a tree that connects the cell body (r) to the

synapses ( p1, p2, . . ., pn). Da & Cunha [44] prove that finding

a tree that minimizes equation (2.3) is equivalent to finding a

Pareto optimal tree. Here, a denotes how much weight is

placed on one objective versus the other.

To generate the Pareto front (figure 1b), we need to find the

set of trees that minimize equation (2.3) for each value of a [

[0, 1]. If a ¼ 0, the optimal tree is the Satellite tree. If a ¼ 1,

the optimal tree is the minimum Steiner tree. We developed

an algorithm to generate optimal trees for intermediate

values of a, as described below.

One advantage of this formulation is that each neural

arbor can be associated with global arbor descriptor (its

value a) that characterizes the trade-off between the two

objectives that the arbor employs. We can then compare the

distribution of these a values across arbors of different

types to quantify morphological differences.
(c) An algorithm for generating Pareto optimal trees
To generate trees that lie on the Pareto front, we used a

greedy algorithm that allows for branch points, which were

not considered by prior work [7,8]. The algorithm takes as

input P and a and outputs TP that attempts to minimize

equation (2.3).

The algorithm starts with the root r in the tree, and all

other points (nodes) outside the tree. In each step, the algor-

ithm considers all possible edges between a node inside the

tree and a node (synapse) outside the tree, and picks the

edge that minimally increases the objective in equation

(2.3). When the algorithm adds an edge, it adds k Steiner

nodes equidistant along the edge, which may be used in sub-

sequent steps as branch points. This process continues until
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all synapses have been added to the tree. In experiments, we

set k ¼ 10.

Electronic supplementary material, figure S1 illustrates

five steps of this process. Importantly, this algorithm is cen-

tralized and is designed to generate a near-optimal Pareto

front that can be used to evaluate the optimality of neural

arbors. This algorithm is not meant to mimic the distributed

process by which neural arbors grow. We do not derive

approximation bounds for this algorithm; however, in Results,

we show that this algorithm performs well in practice.

Optimizing the algorithm. For arbors with thousands or

tens of thousands of synapses this algorithm may not

be very efficient because of the large number of possible

edges to consider in each greedy step. Specifically, there

are O((kn)2) edges to consider, where n is the number of

unconnected points and k is the number of Steiner points

that we add along each edge. Here, we show that we can

reduce the number of candidate edges to consider in each

step to O(kn) without affecting the quality of the solution

generated by the algorithm.

For each node u [ VP already added to the tree, define:

Close(u, TP) ¼ argmin
v

{l(u, v) : v [ P n VP},

i.e. the closest point to u that has not already been added to

the tree. Then, define:

Cost(u, v, TP , a) ¼ a(W(TP)þ l(u, v))þ (1� a)(D(TP)

þ l(u, v)þ d(u, r)),

i.e. the value of the objective, as defined by equation (2.3),

that would result from adding edge (u, v) to TP .

Lemma 2.1 Fix u [ VP ; then Cost(u, v, TP , a) is minimized by
picking v ¼ Close(u, TP) over all possible choice of v (nodes not
already added to the tree).

Proof. Suppose u [ VP , v � VP and we add edge (u, v) to TP .

The increase in wiring cost is a � l(u, v). By definition, this is

minimized if v ¼ Close(u, TP). When we connect v to u, the

shortest path from v to r involves going from v to u and then

taking the shortest path from u to r. Thus, the increase in con-

duction delay is (1 2 a) � d(v, r) ¼ (1 2 a)(l(u, v) þ d(u, r)).

Because d(u, r) is unchanged by connecting v to u, the

increase in conduction delay is minimized by minimizing

(1 2 a) � l(u, v), which is minimized if v ¼ Close(u, TP).

Thus, both objective functions are minimized by connecting

u to Close(u, TP). A

Thus, at every step, we do not need to consider all poss-

ible edges between a node inside the tree and a node outside

the tree. The optimal greedy step only involves edges of the

form (u, Close(u, TP)), with u [ VP . The full algorithm is

shown in algorithm 1 (electronic supplementary material).

To generate the Pareto front we apply the greedy algor-

ithm to values of a [ f0.00, 0.01, . . ., 0.99, 1.00g. Examples

of arbors generated by the algorithm for different values of

a are shown in figure 1c–h.

It remains unclear how close this algorithm gets to find-

ing truly Pareto optimal trees. Minimizing equation (2.3) is

NP-hard; however, some special cases are informative

to look at in detail. For a ¼ 0, the algorithm will provably

generate the optimal tree (the Satellite tree, which minimizes
conduction delay). For a ¼ 1, the algorithm will generate a

tree with a wiring cost no higher than the wiring cost of the

minimum spanning tree, which is itself provably within a

factor of 2 of the wiring cost of the optimal Steiner tree

[45]. In practice, this gap is often much tighter (see e.g.

Conn et al. [46], where a similar greedy algorithm was

shown to find trees within 5–6% of the Steiner tree for

small sets of input points). To further evaluate the optimality

of this algorithm, we compare it against a brute-force algor-

ithm [47] for point sets that are small enough to generate

the optimal spanning tree, and two other greedy heuristics

[35,37] on larger point sets.
3. Results
First, we demonstrate that our greedy algorithm outperforms

other algorithms at generating near Pareto optimal topolo-

gies. Second, we show that neural arbors lie much closer to

the Pareto front than expected by three baselines, and that

this result is robust to different assumptions about the

locations of the synapses along the arbor. Third, we show

that some functional categories of arbors can be differentiated

based on how they are structured. Fourth, we use this same

network design framework to demonstrate that plant arbors

are also Pareto optimal.
(a) The greedy algorithm effectively approximates the
Pareto front

As mentioned above, finding Pareto optimal arbors (i.e.

minimizing the equation (2.3)) is NP-hard, forcing us to

consider heuristics for generating the Pareto front for large

arbors. We first determined how close to Pareto optimal

arbors generated by our greedy algorithm were compared

to the following three competitor algorithms:

(1) Brute-force algorithm [47]. This algorithm simply

enumerates all possible spanning trees and selects the

one that minimizes equation (2.3) for a given value of

a. There are nn22 possible spanning trees, where n is

the number of input points. Thus, we only consider the

brute-force algorithm for small point sets (up to eight

points).

(2) Khuller’s light approximate shortest-path tree (LAST) algor-
ithm [35]. See the electronic supplementary material for

details of this algorithm.

(3) Karger’s algorithm [37]. This algorithm is equivalent to our

greedy algorithm without the use of Steiner points. Like

our algorithm, Karger’s algorithm has been used in geo-

metric settings [37], and has been used for studying

neural arbors [7,8].

None of these three algorithms add branch (Steiner)

points. The comparison between our greedy algorithm and

these three algorithms thus also highlights the utility of

branch points in designing Pareto optimal topologies.

For the test framework, we selected a set of n þ 1 points

(P) randomly from the space [ 210, 10]3, and one of these

points was selected uniformly at random and designated to

be the root (r). For each point set, we varied a [ (0, 1) in

step sizes of 0.01 and ran each algorithm above to generate

a different Pareto front. We then compared the three Pareto
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fronts generated by the algorithms by comparing how many

trees from each front were partially dominated (electronic

supplementary material, Methods) by trees from one of the

other fronts.

Small point sets. We first examined 411 point sets, each

with between five and eight points. For each point set, we

generated a Pareto front (99 trees, using different values of

a [ [0, 1]) using the brute-force algorithm, Khuller’s algor-

ithm, Karger’s algorithm and our greedy algorithm. We

computed a Pareto front using each algorithm; we then com-

pared the quality of these Pareto fronts to determine which

algorithm generated the Pareto front that was closest to

optimal (electronic supplementary material, Methods).

We find that only 7% of the trees generated by our greedy

algorithm are dominated by some tree generated by one of

the other two algorithms. This is in contrast to 52% for the

brute-force algorithm, 56% for Karger’s algorithm and 77%

for Khuller’s algorithm. The brute-force algorithm cannot

be dominated by either Karger’s or Khuller’s algorithms

because neither of these algorithms allow branch points.

Thus, the brute-force algorithm is actually dominated by

the greedy algorithm 52% of the time. The improved perform-

ance of the greedy algorithm over brute-force highlights the

value of using branch points in finding Pareto optimal arbors.

Larger point sets. Next, we examined 1632 point sets, each

with 9–500 points. This size is too large for the brute-force

algorithm to run in a reasonable amount of time.

We find that only 13% of the trees generated by our

greedy algorithm are dominated by some tree generated by

one of the other two algorithms. This is in contrast to 82%

for Karger’s algorithm, and 99:8% for Khuller’s algorithm.

Thus, the greedy algorithm often generates a more optimal

Pareto front compared to Khuller’s and Karger’s algorithms,

which were previously used for this problem [7,8], and its use

of Steiner points allows for more biological realism.
(b) Neural arbors are Pareto optimal
Next, we used the greedy algorithm to test how close neural

arbors were to being Pareto optimal. We obtained 14 145 3D

arbor reconstructions from Neuromorpho (electronic sup-

plementary material, Methods). For each arbor, the location

of the root (r) was designated in the data, and the locations

of the synapses (the pi) were assumed to lie uniformly

along the traced arbor (electronic supplementary material,

Methods). For each arbor point set, we applied the greedy

algorithm for values of a [ [0, 1] to generate the Pareto

front. We then evaluated the wiring cost and conduction

delay for the actual neural arbor, and the distance of the

arbor to the Pareto front (figure S2; electronic supplementary

material, Methods). We also determined the wiring cost and

conduction delay for arbors generated by three baseline

algorithms—Random, Centroid and Barabási–Albert (elec-

tronic supplementary material, Methods)—for the same

point set to assess how likely it is for the arbor to fall near

the Pareto front by chance. These three baselines generate a

tree TP for a set of points P. The Centroid tree creates a

Steiner point at the centroid of the points in P and connects

each point in P to this centroid. Unlike the Centroid tree,

Random and Barabási–Albert do not attempt to produce a

tree with any geometric properties. We did not consider

other geometric models to assess whether the optimizations

made by neural arbors could also be realized by non-geometric
models by chance. For example, if in a model a node

was simply connected to its nearest neighbour, this would

implicitly optimize for wiring length.

Strikingly, we found that almost all neural arbors fell very

close to the Pareto front. In figure 2a–d, we show example

Pareto plots for four individual arbors. The Pareto front

is shown in blue circles, with one circle per value of a [ f0,

0.01, . . ., 0.99, 1.00g. We also mark the location of the neural

arbor with a red ‘X’, and the locations of the trees generated

by each baseline method using the same input point set.

Neural arbors fell much closer to the Pareto front than the

three baselines. In figure 2e, we plot the distances from the

neural arbor to the Pareto front over all 14 145 point sets. In

this plot, the y-axis is the log of the distance from the arbor

to the Pareto front (lower means closer to optimal), and the

x-axis denotes the arbor number (ranging from 1 to 14 145),

ordered by distance. Of the 14 145 point sets, 92.21% of the

neural arbors lay closer to the Pareto front than the Centroid

tree; 99.99% lay closer than the Barabási–Albert tree; and

100% lay closer than the Random tree. Using a binomial

test (electronic supplementary material, Methods), we find

that the neural arbor is significantly more optimal than the

three baselines (p , 102322 in all cases). These results are

summarized in electronic supplementary material, table S2.

The results above suggest that nearly all neural arbors lie

closer to the Pareto front than other baselines, but they do not

describe how much closer. Over all point sets, the average

distance ratio (distance to the Pareto front for the baseline

divided by distance to the Pareto front for the neural arbor)

was 1.38+ 0.20 for the Centroid tree, 5.96+2.36 for the

Barabási–Albert tree and 30.22+20.06 for the Random

tree. In other words, on average, the neural arbors were at

least 38% lower for wiring length, or at least 38% for conduc-

tion delay, compared to the Centroid tree; at least 496% lower

than the average Barabási–Albert tree; and at least 2922%

lower than the average random spanning. Using a T-test

(electronic supplementary material, Methods), we find that

the neural arbors lie significantly closer to the Pareto front

than all baselines (p , 102324), and thus achieve better

trade-offs between wiring cost and conduction delay than

expected by chance.

These results were derived using neural arbors where the

synapse locations were assumed to lie uniformly along the

arbor. In the electronic supplementary material, Results, we

analyse arbors with different spacing between synapses (elec-

tronic supplementary material, figure S3), and with known

synapse locations (electronic supplementary material, figure

S4), and find similar results.
(c) Classifying neural arbors by their structure
Are functional differences between arbors reflected in their

structure? Here, we study two questions. First, are arbors

from different biological categories equally close to being

Pareto optimal? Second, do arbors from different biological

categories have significantly different values of a (i.e. do

they weigh wiring cost and conduction delay differently)?

Uncovering such relationships could be used to hypothesize

about unknown function given structure.

We first associated each arbor with a biological category

based on the type of arbor (apical dendrite, basal dendrite

or axon), the cell type of the neuron (e.g. Purkinje versus

granule), or the neurotransmitter type used by the cell
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Figure 2. Neural arbors are Pareto optimal. (a – d ) Example Pareto front analysis for four arbors: (a) sensory receptor cell from the mouse neocortex, (b) sensory
receptor cell from the mouse dorsal root ganglion, (c) amacrine cell from the human retina and (d ) sensory receptor neuron from the mouse peripheral nervous
system. In each panel, the blue curve shows the Pareto front generated using the greedy algorithm. The red ‘X’ shows the location of the neural arbor, the green
circle shows the location of the Centroid tree, the purple triangles show the locations of the uniform random spanning trees (Random), and the aqua squares show
the locations of the Barabási – Albert trees. The x-axis is the log wiring length, and the y-axis is the log conduction delay. Neural arbors lie much closer to the Pareto
front compared to the other three baselines. In (d ), the arbor is best explained by a value a ¼ 0.03 (right-end of the Pareto front). To make its Pareto front clear,
we omit the baseline models and we do not use a log scale on either axis. (e) Summary of all 14 145 arbors. For each arbor (x-axis), we plot the distance to the
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arbor’s distance to the Pareto front. Neural arbors tend to fall significantly closer to the Pareto front than the other baselines.
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(e.g. glutamatergic versus GABAergic). See electronic sup-

plementary material, table S1 for full list of categories.

We then associated each arbor with two values: its distance

to the Pareto front (electronic supplementary material,

Methods, equation (2)), and a value of a [ [0, 1] that comes

closest to matching its topology (electronic supplementary

material, Methods, equation (3)). Below, we ask if there are

systematic differences in these two values for arbors in one

category versus another.

Arbor type. The distance to the Pareto front was smaller

for apical dendrites (1.01+ 0.10) and basal dendrites
(1.01+0.02) compared to axons (1.13+0.14) (figure 3a).

Error (+) values represent standard deviations. Using

Welch’s T-test on the null hypothesis that the average value

of this distance is the same, this difference was significant

(p , 102324). One possibility for why axons may lie further

from the Pareto front than dendrites is that there is a potential

third objective, such as space-filling, that axons also need to

prioritize (Discussion).

Axons have higher values of a than dendrites: 0.86+0.18

for axons versus 0.26+ 0.30 for apical dendrites, and 0.52+
0.30 for basal dendrites (figure 3b). Using Welch’s T-test on
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Figure 3. Structure – function differences in neural arbors. (a,b) We categorize arbors in three categories. In (a), we plot the distribution of the distances (y-axis) to
the Pareto front for arbors in each category (x-axis). In (b), we show a letter plot depicting the distribution of a values for arbors in each category. The middle bar of
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the null hypothesis that the average value of a is the same for

every pair of groups, we find that each pair of groups (axons

versus apical dendrites, axons versus apical dendrites, and

apical dendrites versus basal dendrites) are significantly

different from each other (p , 102324 in all cases). Thus,

apical dendrites appear to prioritize conduction delay over

wiring cost; basal dendrites take on intermediate values of

a with a more even weighting of both objectives; and axons

appear to prioritize wiring cost over conduction delay.

Cell type. Here, we studied differences in arbors belonging

to one of 15 well-studied cell types (figure 3c,d; electronic

supplementary material, table S1).

The cell types closest to the Pareto front were Golgi cells

(1.01+0.03), granule cells (1.01+ 0.04) and projection cells

(1.01+0.04) (figure 3d). By contrast, the cells that lie furthest
to the Pareto front included amacrine cells (1.29+0.65) and

neurogliaform cells (1.28+0.86) (figure 3c). The cell types

with the most extreme a values (i.e. close to 0 or 1) were

Golgi cells (0.13+0.32), Martinotti cells (0.30+0.41),

amacrine cells (0.75+0.32) and stellate cells (0.74+0.33).

While neuroanatomists have long appreciated the visual

diversity of arbors from different neural cell types, our

work quantifies and provides a quantitative signature for

some of these differences based on a simple trade-off prin-

ciple. Potential avenues for further work may involve

comparing more detailed aspects of these cell types, such

as dendritic signalling, to assess why different types of

arbors may prioritize one objective over the other.

Neurotransmitter types. Here, we grouped arbors into

one of five classes of neurotransmitter types that the
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corresponding cell releases (figure 3e,f ; electronic supplementary

material, table S1).

Nitrergic neurons lay closest to the Pareto front (1.003+
0.003) and had significantly smaller values of a (0.24+0.17),

indicating a tendency towards optimizing for conduction

delay over wiring cost. Other neutrotransmitter types lay

further from the Pareto front: glutamatergic (1.09+0.07),

serotonergic (1.11+0.13), cholinergic (1.11+0.05) and

GABAergic neurons (1.14+0.22) (figure 3e). GABAergic neur-

ons tended to exhibit intermediate a values (0.65+0.41),

whereas the other neurotransmitters generally had values

of a � 0.84—glutamatergic (0.84+0.22), cholinergic (0.90+
0.11) and serotonergic (0.96+0.06). Thus, nitrergic neurons

are unique topologically: they are significantly closer to being

Pareto optimal than any of the other neurotransmitters, and

they prioritize minimizing conduction delay much more

strongly than other neurotransmitters. These results are

summarized in electronic supplementary material, table S3.

Systematic clustering of a values for arbors of different

neurotransmitter types shows the value in using the Pareto

front location to classify neural arbors by function, and

may highlight new connections between structure and

function that merit deeper investigation.

We also found a positive correlation between an arbor’s

distance to the Pareto front and the arbor’s a value

(R ¼ 0.42 using Pearson’s correlation coefficient; p , 102324

using a permutation test). In other words, the more strongly

a neuron emphasized minimizing wiring cost, the further it

lay from the Pareto front. This correlation is positive within

every category of arbors we studied (electronic supplemen-

tary material, table S1), and the correlation is significantly

different from 0 for every category (p , 0.005 in all cases

using a permutation test).

These results show that certain categories of arbors can be

classified using a single value (a), indicating how the arbor

trades off between wiring length and conduction delay.

Additional topological descriptors may further help classify

these arbors [18]. Our results suggest that during evolution,

natural selection may fine-tune arbor growth strategies

based on functional requirements, while still following basic

design templates that generate Pareto optimal arbors.

(d) Similarities in branching patterns of neural arbors
and plant architectures

Nature is abound with branching structures, and it is natural

to ask whether other such networks exhibit a similar cost-

versus-performance trade-off.

Conn et al. [46] recently identified wiring cost and

conduction delay as important design principles constraining

plant shoot (above ground) architectures. Here, synapses are

analogous to leaves, and the soma is analogous to the base/

root of the plant. Wiring cost for plants corresponds to

the amount of resources (e.g. carbon) used to build the

architecture. Conduction delay corresponds to a measure

of the nutrient transport efficiency (e.g. sugars, water) from

the leaves to the root system, and vice versa.

Re-analysing their data, we find that while neural arbors

tend to prioritize minimizing wiring cost, plant shoot architec-

tures tend to prioritize minimizing conduction delay

(electronic supplementary material, Results and figure S5).

We speculate that for plants, space may not be as constrained

as for neural arbors packed in the brain, and thus it is possible
that wiring conservation is more important to neurons than

plants. Nonetheless, the fact that plants and neurons follow

similar design principles was an unexpected result, especially

since they are separated by millions of years of evolution.

4. Discussion
We studied a network design trade-off between two compet-

ing biological objective functions—minimizing conduction

delay and minimizing wiring cost—interpolated between

by a single parameter. We developed a graph-theoretic algor-

ithm to generate near-Pareto optimal topologies that

outperformed prior algorithms. We then showed that

almost all 14 145 neural arbors analysed achieved a level of

Pareto optimality significantly better than three other baseline

arbors, suggesting that such an optimization is unlikely to

occur by chance. We presented instances where differences in

arbor type, cell type and neurotransmitter type employed

different trade-offs, suggesting that different biological

constraints can tune arbor topology while still obeying the

same underlying trade-off principle. Finally, we compared

neural arbors to plant architectures and found that both were

Pareto optimal, suggesting broad similarities in branching

structures across natural systems that have diverged long ago.

Our work raises three questions for future work. First, our

algorithm for computing the Pareto front was designed to

find nearly Pareto optimal trees; it was not meant to mimic

the growth process used by neural arbors. Specifically, our

algorithm used centralized computation when determining

which edge to add next to the existing tree. Furthermore, it

assumed that the locations of pre- or post-synaptic partners

were pre-determined. In reality, arbors likely grow using

local rules of computation, and create synapses in locations

that are not entirely pre-determined. This raises an open chal-

lenge of finding a distributed stochastic growth algorithm to

generate Pareto optimal arbors, while incorporating general

rules by which neural arbors develop, including the option

to add branch points, and allowing some flexibility in

where synapses are made. Such an algorithm may involve

modifying existing random graph models to produce desir-

able geometric structures [48]. Second, as discussed in

related work, there are several other objectives that may

constrain neural arbor topology, such as space-filling, that

may help further classify arbor types and better explain

instances where arbors lie further from the Pareto front.

One advantage of our Pareto optimality framework is that

it can naturally be extended to more than two objectives. Fur-

thermore, our model did not include wire radii, as these data

are not currently widely available for many different types of

arbors. These data could also be introduced in our framework

using weighted edges. Third, further improvements could be

made to our greedy algorithm. For example, instead of only

considering one edge to add per iteration, we could add mul-

tiple edges per time step. The algorithm would choose the

optimal set of k new edges in each time-step; however, such

a k-greedy algorithm would increase the run-time by a

factor of O(nkþ1) steps.
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