
ARTICLE Communicated by Romain Brette

Using Inspiration from Synaptic Plasticity Rules to Optimize
Traffic Flow in Distributed Engineered Networks

Jonathan Y. Suen
j.suen@duke.edu
Duke University, Department of Electrical and Computer Engineering,
Durham, NC 27708, U.S.A.

Saket Navlakha
navlakha@salk.edu
Salk Institute for Biological Studies, Integrative Biology Laboratory,
La Jolla, CA 92037, U.S.A.

Controlling the flow and routing of data is a fundamental problem in
many distributed networks, including transportation systems, integrated
circuits, and the Internet. In the brain, synaptic plasticity rules have been
discovered that regulate network activity in response to environmental
inputs, which enable circuits to be stable yet flexible. Here, we develop
a new neuro-inspired model for network flow control that depends only
on modifying edge weights in an activity-dependent manner. We show
how two fundamental plasticity rules, long-term potentiation and long-
term depression, can be cast as a distributed gradient descent algorithm
for regulating traffic flow in engineered networks. We then characterize,
both by simulation and analytically, how different forms of edge-weight-
update rules affect network routing efficiency and robustness. We find a
close correspondence between certain classes of synaptic weight-update
rules derived experimentally in the brain and rules commonly used in
engineering, suggesting common principles to both.

1 Introduction

In many engineered networks, a payload needs to be transported between
nodes without central control. These systems are often represented as
weighted, directed graphs. Each edge has a fixed capacity, which represents
the maximum amount of traffic the edge can carry per unit time. Traffic in
these networks consists of a series of flows, each of which contains some data
that originate at a source node and attempt to reach a target node via a path
in the network. For example, in vehicular transportation systems (nodes are
intersections; edges are roads), cars travel from one location to another, and
each road has a capacity that limits the number of cars that can traverse the
road at once. In network-on-a-chip circuits (nodes are components such as

Neural Computation 29, 1204–1228 (2017) c© 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00945

Optimizing Network Flow Using Synaptic Plasticity Rules 1205

CPU and GPU cores equipped with extremely basic routers, and edges are
circuit wiring between cores), tiny units of data called flits flow through
the circuit, and each link can transport only a limited number of flits at a
time (Cota, de Morais Amory, & Lubaszewski, 2012). On the Internet, pack-
ets navigate from one host to another, and each communication link has a
capacity that constrains the rate of data flow through the link. In all these
cases, the goal is to optimize performance metrics, including how long it
takes for data to reach the target and how long data are queued or lost along
the way due to exceeding capacities.

Two primary services are required in these networks: routing and flow
control. Network routing refers to moving a payload from a source node in
the network to a target node through some path (Royer & Toh, 1999), often
maintained using distributed routing tables (Gavoille, 2001). The majority
of networks always send traffic along the shortest path from source to target,
where shortest refers to physical distance or transit time. In this article, we
also assume routing occurs via the shortest source-target path and focus on
algorithms for flow control.

Flow control determines when and how much data can be sent through
the network. Engineered networks are often designed based on the con-
cept of oversubscription or blocking, where there is not enough capacity
to simultaneously service every possible flow at maximum capacity due to
bottlenecks in the network. Bottlenecks can cause congestion, which results
in data loss and reduction in useful throughput, since when demand for a
certain link exceeds capacity, the excess data must be queued or dropped.
Effective flow control simultaneously maximizes the utilization of link ca-
pacity while maintaining low loss and delay. In general, flow control is an
NP-hard problem (Wang, Li, Low, & Doyle, 2003; Fortz & Thorup, 2000).
It is even more challenging in online systems that serve many flows con-
currently, where traffic can change unpredictably and optimization must
happen in real time. Further, control logic must be implemented distribut-
edly, with minimal communication between nodes.

To address these challenges, we developed a new neuro-inspired
distributed computing model where flow control occurs by modulating
(increasing or decreasing) edge weights using only 1-bit (binary) local feed-
back. Edge weights represent a control variable that denotes how many
data should flow along the edge at the current time. For example, if 10
units of data want to travel from node u to v and if the weight of edge
(u, v) is 6, then 6 units can be successfully transmitted and the other 4 units
are either queued or dropped. There exists an optimal global weight dis-
tribution at every time step, which is dependent on the trade-off between
maximizing data flow rates versus minimizing data drops and queueing.
To inform the direction of how weights should change to approach this
distribution, the network relies on 1-bit local feedback between neighbor-
ing nodes, which indicates whether the data were successfully transmitted
(without being queued or dropped). This feedback is used to increase or

1206 J. Suen and S. Navlakha

decrease edge weights to ensure that links are not underutilized or over-
loaded, respectively.

How does this relate to synaptic plasticity in the brain? Building off
prior work, we argue that synaptic weight-update rules can be viewed as
a distributed gradient descent process that attempts to find a weight dis-
tribution that optimizes a global objective (Bengio, Lee, Bornschein, & Lin,
2015; Bengio, Mesnard, Fischer, Zhang, & Wu, 2015). While the computa-
tional models and feedback mechanisms used to trigger weight changes in
engineered networks are clearly different from those used in the brain, we
consider the following the questions:

1. The direction and magnitude of weight updates—when and how
much should they be increased or decreased.

2. How do these local decisions affect global performance objectives in
engineering (bandwidth, drops, queueing delay).

3. Can general principles for modulating edge weights be found across
engineered and neural systems.

Overall, this article makes four contributions:

1. A new neuro-inspired distributed computing model to optimize traf-
fic flow based only on edge weight updates and 1-bit feedback be-
tween adjacent nodes.

2. A casting of long-term potentiation (LTP) and long-term depression
(LTD) in terms of distributed gradient descent dynamics.

3. Simulations, using artificial and real networks, and theoretical anal-
ysis of five classes of weight-update rules.

4. Comparisons of the best-performing classes with experimental data
detailing the functional forms of LTP and LTD in the brain.

1.1 Related Work. Congestion control in many distributed networks,
such as the Internet, is performed on a global end-to-end basis per flow,
meaning that the source of each flow regulates the rate at which it sends
data into the network based on a binary feedback signal from the target
node (Corless, King, Shorten, & Wirth, 2016). Our neuro-inspired per link
model, described below, is stricter in its feedback constraints; each node can
regulate traffic but based only on the congestion it observes on its incoming
and outgoing links, independent of the source and target of the data. This
model is more relevant to vehicular traffic networks (where it is impossible
for a traffic control device, such as a traffic light, to know the ultimate
destination of a vehicle) and network-on-a-chip circuits (where flits travel
independently through the circuit, like vehicles). Traffic control algorithms
have been analyzed in many forms but largely assume the problem is
centralized or offline (Gayme & Topcu, 2011). Other approaches attempt to
emulate a centralized algorithm by passing large-sized messages (Mateos-
Nunez & Cortes, 2013). Distributed gradient descent algorithms have been

Optimizing Network Flow Using Synaptic Plasticity Rules 1207

Figure 1: Model overview. (A) Input network, consisting of sources that trans-
mit data to targets via a routing network. (B) Illustration of a congested link
(v,w), where the amount of incoming data to a node exceeds outgoing link
weight, leading to dropped or queued data. Flows incoming to node v are pro-
cessed in a random order. (C) If no jam occurs (case 1), all links LTP (i.e., increase
their edge weight) in the next time step. If a jam does occur (case 2), the edges
contributing data to the jam undergo LTD (i.e., they decrease their edge weight),
and the jammed link LTPs, in an attempt to alleviate the jam in the next time step.

studied in many areas, but they also assume the ability to pass large and
frequent messages, or they require significant data aggregation at individual
nodes (Li, Wu, Xu, Shi, & Shi, 2014; Zinkevich, Weimer, Li, & Smola, 2010;
Yuan, Ling, & Yin, 2016).

2 A Distributed Network Model for Traffic Flow Control

We are given a network G = (V, E,W). The node set V is partitioned into
three nonoverlapping subsets: sources S ⊂ V , targets T ⊂ V , and routers
R ⊂ V . Data are transmitted from sources to targets via the routers (see
Figure 1A). The edges E are directed; for simplicity, we assume each source

1208 J. Suen and S. Navlakha

is connected to exactly one router (e.g., a feeder road), and each target has
an incoming edge from exactly one router (e.g., a highway exit). The routers
are connected with a uniform or scale-free degree topology.

The weight Wuv(t) of each edge corresponds to the maximum amount
of traffic the flow control algorithm allows to travel from u → v at time t.
Each weight Wuv(t) ∈ [1,C] for all (u, v) ∈ E and for all t, where C is defined
as a fixed maximum capacity for each edge. Edge weights from routers to
targets are always set to C because there are no outgoing edges from the
targets, and hence no possibility of downstream congestion. Weights of all
other other edges will vary over time based on traffic flow and congestion.

Each source desires to send L � C units of data to one random target;
hence, there are |S| flows actively competing in the network and sending
data. Data for each flow are routed from the source to the target via the
shortest path in the network. In practice, this is easily accomplished using
a distributed routing algorithm (Gavoille, 2001).1 In each time step t, each
source injects new data into the network, the amount of which is equal to the
outgoing edge weight from the source to the router it is connected to. Thus,
if this weight changes, the amount of new data injected into the network by
the source also change. Data arriving at a router are forwarded to the next
node along the shortest path to the target. If data arrive at router u destined
for node v, the data actually sent are upper-bounded by the edge weight
Wuv(t), which can change over time. If multiple flows desire to use edge
u → v in the same time step, we process each flow in a random order. This
means that a random incoming flow is chosen, and its data units are all sent
(up to the link weight; the rest are dropped). Then another incoming flow
is chosen at random, and its units are handled similarly. A flow is complete
when its source has successfully transferred L data units to its target.

The only control variables of the algorithm to achieve flow control are
the edge weights W at each time step. Our objective is to:

maximize
∑

t

UF (W(t))

subject to

Wuv(t) ≤ C for all t and (u, v) ∈ E. (2.1)

Here, UF is an objective function (described later) that measures how well
the current edge weights perform when routing data from the flows F cur-
rently in the network. To enforce the constraint, we propose two application-
dependent models for penalizing excess traffic on an edge: a drop model

1This model of routing is likely different from that occurring in the brain. Our work
is not meant to derive a mapping between the two or suggest that their mechanisms are
similar.

Optimizing Network Flow Using Synaptic Plasticity Rules 1209

and a queue model (see Figure 1B). Let Duv(t) be the total data at router u
that desire to be passed to node v at time t. If Duv(t) > Wuv(t), the excess
data are either dropped (i.e., discarded) or queued at node u until at least
the next time step. Loss models are consistent with many data networks
and neural circuits (Branco & Staras, 2009). Queue models are consistent
with transport networks and can help smoothe transient or bursty traffic.
In each time step, data queued at a node are processed before nonqueued
data (i.e., a first-in, first-out buffer). We assume a queue of infinite length,
but we penalize solutions that produce long queues.

At every time step, there exists an optimal global weight distribution
for a given objective function. This optimum will change as traffic demand
varies over time. The goal is to track this distribution as closely as possible
by applying gradient descent on the edge weights. We use 1-bit feedback be-
tween adjacent nodes, indicating whether data were successfully sent from
one node to the other (i.e., no data were dropped or queued). If the trans-
mission is successful, the data rate is increased (to probe whether higher
bandwidth can be achieved). Conversely, if congestion is experienced, the
data rate is decreased. This feedback thus serves as the direction of the lo-
cal gradient (at the edge) for the global objective. By modifying the edge
weight in accordance with this local gradient, we attempt to minimize the
global objective. The magnitude of the edge weight change is based on
both the direction of change and the current weight. Therefore, the algo-
rithm seeks the point that locally maximizes traffic flow without triggering
congestion.

Next, we describe how synaptic plasticity rules can serve as inspira-
tion toward regulating these edge weights in an online, activity-dependent
manner using simple distributed computation.

2.1 Synaptic Plasticity as Distributed Gradient Descent on Edge
Weights. Bengio et al. and others have argued in recent work that many
forms of Hebbian learning, such as spike-timing-dependent plasticity, may
correspond to gradient descent toward neural activities that optimize a
global objective (Bengio, Lee et al., 2015; Bengio, Mesnard et al., 2015; Os-
ogami & Otsuka, 2015). They propose that neurons perform “inference” to
try to better predict future activity given current and past data. To approach
optimal activity levels, feedback signals between pre and postsynaptic neu-
rons, such as those used to trigger LTP and LTD, cause firing rates to increase
or decrease based on the gradient of the objective.

Under a connectionist assumption, where neural activity is a function
of the synaptic weights coupling neurons together, the state of the network
can be described by the edge weights over the population of synapses
(along with other presumed constants, such as activation functions). The
evolution of the system can be described by how these weights change
in response to activity. In our case, activity-dependent feedback signals
between adjacent nodes (described in detail below) provide a measurement

1210 J. Suen and S. Navlakha

of the direction of the local gradient at the edge, which similarly triggers
edge weights to increase or decrease. These weight changes thus correspond
to a distributed gradient descent algorithm for finding a set of edge weights
that maximizes a global objective. The movement toward the global optimal
is complicated by the nonindependence of weight changes (network effects)
and the uncertainty in future inputs (nonstationarity of traffic).

One critical question then is, how much should the weight increase (LTP)
or decrease (LTD) following feedback? We next describe experimental data
detailing what forms these rules might take in the brain.

2.2 Experimentally Derived Weight-Update Rules for LTP and LTD.
To inspire our search into different possible weight-update rules, we sur-
veyed the recent literature for models based on experimental data (e.g.,
electrophysiology, imaging) that provided evidence of the functional forms
of LTP and LTD (see Table 1). We categorized rules into four classes:

1. Additive. The change in edge weight is based on an additive constant.
2. Multiplicative. The change is based on a multiplicative constant.
3. Weight dependent. The change more generally is based on a function

of the existing edge weight.
4. Time dependent. The change also depends on the history of recent edge

weight changes.

In this article, we focus on the first three classes.
These rules will be used to derive a class of neuro-inspired distributed

gradient descent algorithms for updating edge weights, as described in the
next section. Table 1 is not meant to exhaustively list all forms of synaptic
plasticity rules derived in the literature (see section 4) but rather to pro-
vide some basic structure into possible simple-to-implement rules and their
parameters.

2.3 Distributed Algorithms for Updating Edge Weights. First, to in-
form the direction of the weight change (increase or decrease), in each
time step, we allow 1-bit feedback between adjacent nodes. Let Jamvw(t)
be an indicator variable equal to 1 if data at node v are lost or queued
due to congestion on edge (v,w) at time t, and 0 otherwise. Assume data
for a flow are traveling from node u to v to w. When considering how to
modify the weight of edge (u, v), we need to consider what happens on
the adjacent downstream edge (v,w) where traffic is flowing. Intuitively, if
Jamvw(t) == 1, then the incoming edge weight Wuv(t + 1) should LTD since
it contributed data to the jam. Further, the edge weight Wvw(t + 1) should
LTP to attempt to alleviate the congestion. If neither edge (u, v) nor (v,w)

is jammed, then both should LTP (see Figure 1C). Thus, the Jam term serves
as a 1-bit measurement of the direction of the local gradient at edge (u, v).
Overall, the logic implemented at each edge (u, v) is shown in algorithm 1.

Optimizing Network Flow Using Synaptic Plasticity Rules 1211

Ta
bl

e
1:

C
or

re
sp

on
d

en
ce

be
tw

ee
n

Sy
na

pt
ic

Pl
as

ti
ci

ty
R

ul
es

w
it

h
E

xp
er

im
en

ta
lS

up
po

rt
an

d
N

et
w

or
k

C
on

tr
ol

A
lg

or
it

hm
s

U
se

d
in

E
ng

in
ee

ri
ng

.

Pl
as

ti
ci

ty
R

ul
e

E
qu

at
io

n
B

ra
in

E
ng

in
ee

ri
ng

LT
P

A
d

d
it

iv
e

W
(t

+
1)

=
W

(t
)
+

k i
So

ng
,M

ill
er

,a
nd

A
bb

ot
t,

20
00

;K
op

ec
,

L
i,

W
ei

,B
oe

hm
,a

nd
M

al
in

ow
,2

00
6

C
hi

u
an

d
Ja

in
,1

98
9;

C
or

le
ss

et
al

.,
20

16
M

ul
ti

pl
ic

at
iv

e
W

(t
+

1)
=

W
(t

)
×

k i
—

C
hi

u
an

d
Ja

in
,1

98
9

W
ei

gh
td

ep
en

d
en

t
W

(t
+

1)
=

W
(t

)
+ ×

f(
W

(t
))

O
ja

,1
98

2;
B

ia
nd

Po
o,

19
98

;v
an

R
os

su
m

,B
i,

an
d

Tu
rr

ig
ia

no
,2

00
0

B
an

sa
la

nd
B

al
ak

ri
sh

na
n,

20
01

;
K

el
ly

,2
00

3;
H

a,
R

he
e,

an
d

X
u,

20
08

H
is

to
ry

d
ep

en
d

en
t

W
(t

+
1)

=
f(

W
(t

),
..

.,
W

(t
−

�
(t

))
)

B
ie

ne
ns

to
ck

,C
oo

pe
r,

an
d

M
un

ro
,

19
82

;F
ro

em
ke

,D
eb

an
ne

,a
nd

B
i,

20
10

;C
oo

pe
r

an
d

B
ea

r,
20

12
;

K
ra

m
ar

et
al

.,
20

12

Ji
n,

G
uo

,M
at

ta
,a

nd
B

es
ta

vr
os

20
02

LT
D

Su
bt

ra
ct

iv
e

W
(t

+
1)

=
W

(t
)
−

k d
So

ng
et

al
.,

20
00

—
M

ul
ti

pl
ic

at
iv

e
W

(t
+

1)
=

W
(t

)
×

k d
B

ia
nd

Po
o,

19
98

;v
an

R
os

su
m

et
al

.,
20

00
;Z

ho
u,

H
om

m
a,

an
d

Po
o,

20
04

C
hi

u
an

d
Ja

in
,1

98
9;

C
or

le
ss

et
al

.,
20

16
W

ei
gh

td
ep

en
d

en
t

W
(t

+
1)

=
W

(t
)

− ×
f(

W
(t

))
O

ja
,1

98
2

B
an

sa
la

nd
B

al
ak

ri
sh

na
n,

20
01

;
C

or
le

ss
an

d
Sh

or
te

n,
20

12
H

is
to

ry
d

ep
en

d
en

t
W

(t
+

1)
=

f(
W

(t
),

..
.,

W
(t

−
�

(t
))

)
B

ie
ne

ns
to

ck
et

al
.,

19
82

;F
ro

em
ke

et
al

.,
20

10
;C

oo
pe

r
an

d
B

ea
r,

20
12

Ji
n

et
al

.,
20

02

N
ot

es
:T

he
“—

”
in

d
ic

at
es

la
ck

of
su

pp
or

t.
R

ev
ie

w
s

of
m

an
y

of
th

es
e

ru
le

s
ar

e
pr

ov
id

ed
by

K
ep

ec
s,

va
n

R
os

su
m

,S
on

g,
an

d
Te

gn
er

(2
00

2)
,M

or
ri

so
n,

D
ie

sm
an

n,
an

d
G

er
st

ne
r

(2
00

8)
,W

at
t

an
d

D
es

ai
(2

01
0)

,a
nd

Fr
oe

m
ke

,D
eb

an
ne

,a
nd

B
i(

20
10

).
H

is
to

ry
-d

ep
en

d
en

t
ru

le
s

m
ay

al
so

d
ep

en
d

on
th

e
hi

st
or

y
of

re
ce

nt
ac

ti
vi

ty
in

st
ea

d
of

on
ly

th
e

hi
st

or
y

of
re

ce
nt

w
ei

gh
ts

.

1212 J. Suen and S. Navlakha

We assume that a node (in this case, v) can modify the edge weight of
both its incoming and outgoing edges. In synapses, this may be achieved
by modulating the presynaptic release probability or the number of post-
synaptic receptors (e.g., Costa, Froemke, Sjostrom, & van Rossum, 2015;
Markram, Gerstner, & Sjostrom, 2012; Yang & Calakos, 2013; Fitzsimonds,
Song, & Poo, 1997) or via other gating mechanisms (Vogels & Abbott, 2009).
In data networks, a node can pause incoming data by transmitting a sig-
nal and can pause outgoing data by simply not transmitting. If an edge
gets both LTP and LTD signals in a time step, it defaults to LTD. In ev-
ery time step, the weight of every edge that carries data will either LTP
or LTD.

Second, to determine the magnitude of the weight change, we consider
the following weight-update rules for LTP and LTD:

Wuv(t + 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wuv(t) + ki, ki > 0 LTP: Additive increase (AI)

Wuv(t) × ki, ki > 1 LTP: Multiplicative increase (MI)

Wuv(t) − kd, kd > 0 LTD: Subtract decrease (SD)

Wuv(t) × kd, 0 < kd < 1 LTD: Multiplicative decrease (MD)

.

We consider four combinations of LTP and LTD: AIMD, AISD, MIMD,
and MISD. Each of these algorithms has some theoretical or experimental
basis, or both (see Table 1). For example, AISD was proposed by Kopec
et al. (2006) and Song et al. (2000). AIMD was proposed by van Rossum
et al. (2000) and Delgado, Gomez-Gonzalez, and Desai (2010). Multiplicative
decrease rules have been proposed by Zhou et al. (2004), among others.

Optimizing Network Flow Using Synaptic Plasticity Rules 1213

We also compare to an algorithm based on the classic Oja learning
rule (Oja, 1982):

Wuv(t + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wuv(t) + ki

(
1 − Duv(t)

2

Wuv(t)C

)
, ki > 0 LTP: Oja

Wuv(t) − kd

(
1 + Duv(t)

2

Wuv(t)C

)
, kd > 0 LTD: Oja

.

Unlike the previous rules, Oja uses the activity (traffic) of the edge as a
variable, where Duv(t) is the amount of data traversing edge (u, v) at time
t. This rule is slightly different from the typical Oja rule where the change
in the weight for the ith input, �Wi = α(xiy − y2Wi) (learning weight α,
synaptic input x, and output y). The squared term functions as a decay on
the weight. We include a similar activity-dependent squared decay term
(Duv(t)

2/Wuv(t)), but we normalize it by C to lie within the required weight
range. Our term decreases the effect of LTP and increases the effect of LTD
as the link approaches capacity. This allows more aggressive ki and kd to
quickly adjust traffic.

Another algorithm we compare is bang-bang control. This rule is often
used in neural circuit design (Feng & Tuckwell, 2003; Zanutto & Staddon,
2007) and in engineering (Lazar, 1983) to control and stabilize activity:

Wuv(t + 1) =
{

C LTP: Bang-bang

1 LTD: Bang-bang
.

Finally, we compare to a baseline rule, Max Send, which keeps all edge
weights fixed at C in every time step. For all algorithms, if a weight equals
C and is triggered to LTP, it stays at C. Likewise, if a weight equals 1 and is
triggered to LTD, it stays at 1.

We consider only integer units of data, so for all update rules, W is
rounded to an integer. To prevent a link from getting stuck at 0 weight
(e.g., for MISD), every weight was required to have a minimum of 1. The
link capacity C � 1, so the integer rounding and minimum value were
negligible in terms of overall performance.

2.4 Objective Functions, Simulations, and Data. Next, we describe
network performance measures to quantify how well these rules behave to-
ward optimizing global objectives (UF). The objective functions we selected
are typically used to evaluate performance in engineered networks (Pande,
Grecu, Jones, Ivanov, & Saleh, 2005; Ahn, Danzig, Liu, & Yan, 1995).

Let F define the set of |S| competing flows and L be the load of each flow.
The three objective functions are:

1214 J. Suen and S. Navlakha

• Bandwidth: Amount of data successfully transferred per time step,
averaged over all flows: |F |−1 ∑

i L/time(Fi), where time(Fi) is the
number of time steps for flow i to complete.

• Drop penalty: Percentage of data lost, averaged over all flows:
|F |−1 ∑

i lost(Fi)/L, where lost(Fi) is the number of data lost by flow
i over all time steps until completion. The drop penalty may go above
100% if more data sent by the source are lost than delivered.

• Queue penalty: The percentage of data queued per hop, averaged over
all flows: |F |−1 ∑

i queued(Fi)/(L × path(Fi)), where queued(Fi) is
the total number of data inserted into queues and path(Fi) is the path
length of flow i.

• Parameter robustness: One critical component of these algorithms is
that they must work well in general. Traffic is highly dynamic, and
thus optimizing parameters for one particular traffic regime or net-
work topology will not be sufficient for real-world use. We thus focus
on the robustness or sensitivity of each algorithm by testing the vari-
ability in their performance across a broad range of parameters.

2.4.1 Simulation Framework. We created a directed network with N
sources, N targets, and N routers, where N = 100 or 1000. Each source is
connected to exactly one random router (the same router can have an edge
from multiple different sources), and each target has an incoming edge from
one random router. The router-router network was defined using a uni-
form or scale-free degree topology with each router connected to six other
routers (Corless et al., 2016). We defined N concurrent flows, one starting
from each source and each selecting a random target (the same target may
be selected multiple times across flows). Each flow contained L = 100 × C
data units, as 100 is roughly the average number of round-trip times taken
for a data transfer on the Internet (Corless et al., 2016). The weight of each
edge was initialized to the maximum capacity, C, in order to immediately
experience contention. The mean path length of the artificial network was
4.7, large enough to provide several links of potential contention. Each
performance measure was averaged over 25 repeat simulations.

2.4.2 Parameter Variation. For the weight-update rules, we varied AI
(ki ∈ [1.0, 9.0]), SD (kd ∈ [1.0, 9.0]), MI (ki ∈ [1.1, 1.9]), MD (kd ∈ [0.1, 0.9]).

2.4.3 Real-World Data. We used the CAIDA autonomous system (AS)
relationship data to generate a graph based on the Internet routing network
(www.caida.org/data/as-relationships). Each AS represents the highest-
level routing subnetwork on the Internet. The CAIDA data contained
connectivity between 53,195 AS subnetworks. We treat each AS as a sin-
gle routing node in our model. We created the same number of sources
and targets (53,195 each); each source was connected to one random AS,
and each target had one incoming edge from a random AS. The network

Optimizing Network Flow Using Synaptic Plasticity Rules 1215

Figure 2: Comparison of seven activity-dependent weight-update rules. Band-
width versus (A) drop penalty and (B) queue penalty. The lower right of the plot
corresponds to an empirical upper bound, which occurs when the bandwidth
is that of the highest observed algorithm but with zero drop or queue penalty.
Each dot corresponds to an algorithm run using different values of the increase
and decrease parameters (ki, kd). AIMD, MIMD, and Oja perform the best.

contained 537,582 total directed edges. To simulate flows, we selected about
1% of the sources (500) and paired each source with a random target. Each
performance measure was averaged over 10 repeat simulations. We set the
capacity, C = 1000.

3 Results

First, we describe the performance of each weight-update algorithm against
the global objectives (bandwidth, drops, and queueing) using both simu-
lated and real-world networks. Second, we support these results by analyt-
ically deriving the performance of each algorithm as it adapts to changing
traffic demands. Third, we describe how the best-performing rules compare
to those commonly used in engineering.

3.1 Observations from Simulations and Real-World Network Flows.
We first compared the performance of the seven edge-weight update al-
gorithms (see section 2.3) by simulation. Each algorithm was evaluated
according to the bandwidth offered and the amount of data dropped or
queued.

The two strongest-performing algorithms were AIMD and MIMD,
with Oja lying in between (see Figure 2). AIMD, for some parameters,
achieved a bandwidth comparable to other algorithms, but its main strength
was in reducing the drop penalty by at least one order of magnitude
(averages: AIMD = 6.4%, OJA = 69.2%, MIMD = 69.3%, AISD = 124.4%,
MISD = 145.2%; see Figure 2A). The former was due to its conservative

1216 J. Suen and S. Navlakha

rule for increasing edge weights for LTP (additive) and the latter to its ag-
gressive edge weight decrease for LTD (multiplicative). AISD and MISD
showed a very high drop penalty primarily because upon contention, edge
weights were only decreased subtractively; this led to slow adaptation
though higher bandwidth because few links were ever underutilized. In
general, the Oja rule (a variant of AISD) improved over AISD but still
achieved a much higher drop penalty compared to AIMD, also due to its
conservative decrease. MIMD showed great sensitivity to algorithm pa-
rameters, some of which performed well. While keeping all edge weights
at maximum capacity may be intuitively appealing (Max Send), this is in
general not a good solution because any downstream bottleneck will result
in massive data drops. We also observed similar trends for all algorithms
using the queue model (see Figure 2B).

Overall, for both models, the multiplicative decrease algorithms (AIMD,
MIMD) and the Oja algorithm demonstrated a better trade-off between
bandwidth and drop or queue penalties than other algorithms, indicating
their ability to more closely approach the optimal edge weights. We also
tested these observations for larger networks with different router connec-
tivity topologies and observed similar overall trends (see the appendix and
Figure 4).

Next, we tested how well and how quickly each algorithm could adapt
to new traffic, simulated on a real Internet backbone routing network. The
simulation was for 3000 time steps. During t < 1000 and t > 2000, 500 flows
concurrently competed. During 1000 ≤ t ≤ 2000, 500 additional flows were
temporarily added (“rush hour”). All algorithms demonstrated some reduc-
tion in bandwidth when rush hour begins due to the additional number of
competing flows. However, AIMD and MIMD incurred the least transient
drop penalty (i.e., the drop penalty incurred immediately after rush hour
starts; see Figure 3B). Overall, AIMD yielded significantly lower transient
drop penalty than all other algorithms (p < 0.01; two-sample t-tests) and
significantly lower overall drop penalty than MIMD. AIMD and MIMD
also produced only a 4% to 5% difference in bandwidth compared to the
other algorithms (average data per time step: AIMD = 776 ± 6.82, MIMD =
786 ± 6.94, OJA = 814 ± 19.38, AISD = 819 ± 6.11, MISD = 820 ± 5.93 at
t = 1500; see Figure 3A). These results suggest that AIMD and MIMD adapt
faster to changing traffic, yielding fewer transient drops with comparable
bandwidth.

Next, to support these observations, we formally analyze the adaptive
behavior of each algorithm.

3.2 Analyzing Transient Response Times for AIMD, MIMD, AISD,
MISD, and Oja. An important aspect of algorithm performance is its
nonstationary or transient behavior—how well it adapts when traffic
suddenly increases and the available bandwidth per flow decreases (see
Figure 3). Real networks are never static; all flows experience some level

Optimizing Network Flow Using Synaptic Plasticity Rules 1217

Figure 3: Adaptation to changing traffic demands. Traffic simulated on a real
Internet backbone routing network for 3000 time steps. Performance measures
were averaged every 100 time steps. We selected the parameters for each algo-
rithm that had the highest bandwidth in Figure 2 while being within 1% of the
minimum drop penalty for the algorithm. AIMD and MIMD showed the least
additional penalty (B) due to rush hour, suggesting quick adaptation, while also
yielding a similar bandwidth (A) as MISD, AISD, and Oja.

of perturbation due to varying traffic. Thus, as opposed to analyzing con-
vergence properties (as is typically done for gradient descent algorithms),
we analyzed a simple but informative scenario: the performance of each
algorithm when a second flow is added to a link that is initially serving
only a single flow at maximum capacity.

Assume the link (u, v) under consideration has fixed weight C and that
there are two flows starting from s1 and s2 that both need to use (u, v) to
reach their downstream target (and no other link in the network is limiting).
Let Ws1u(t) = C; then when the second flow begins, assume Ws2u(t) = 1,
where C � 1. Assume a single LTD operation on (u, v) will lower the total
traffic sent by both flows along (u, v) to be below C, hence alleviating the
congestion. After the initial congestion event, there will be ≥ 1 time steps
of LTP before congestion reoccurs. Let n be the number of time steps before
congestion reoccurs. We wish to find the amount of data dropped or queued
(called overshoot) at time n, defined as the difference between the amount of
data desired by both flows along edge (u, v) and C at the moment LTD is
reactivated.

Theorem 1 (overshoot of AIMD). The two-flow transient response of AIMD has
an overshoot that increases linearly with n but is reduced by a term proportional
to the capacity, C.

Proof. At the first time step (−1 to simplify notation), the amount desired
by both flows on (u, v) is:

1218 J. Suen and S. Navlakha

Time t Flow 1 Flow 2 Jamuv
(t)

−1 C 1 True

Since the sum of the flows is greater than C, congestion occurs and the jam
indicator variable Jamuv(t) is true. In the next step, LTD via multiplicative
decrease is applied:

Time t Flow 1 Flow 2 Jamuv
(t)

0 Ckd kd False

This brings the total desired traffic along (u, v) under C. Additive increase
then occurs for n steps:

Time t Flow 1 Flow 2 Jamuv
(t)

1 Ckd + ki kd + ki False
2 Ckd + 2ki kd + 2ki False
...

...
...

...
n Ckd + nki kd + nki True

At time step n, the overshoot along (u, v), which is the excess traffic over C,
is:

(Flow 1 + Flow 2) − C = (Ckd + nki + kd + nki) − C,

≈ 2nki + C
(
kd − 1

)
, (3.1)

assuming the single kd term is negligibly small. Note that since kd ∈ (0, 1),
the second term is negative. �

We similarly derived the overshoot of MIMD, AISD, and MISD (see the
appendix and summary in Table 2). The theoretical performances of the
algorithms on the two-flow case correlate well with the simulated perfor-
mance using hundreds of concurrent flows in a larger network. Both AI
algorithms have an overshoot that has a 2nki term. For AIMD, this term is
reduced byC(kd − 1). AISD, however, is hurt by a slow subtractive decrease,
and hence only reduces the 2nki term by 2kd. Since |C(kd − 1)| > |2kd| for
large values of C, AIMD typically performs better (compare the blue dots
versus yellow dots in Figure 2).

The MIMD overshoot shows a complex dependence of ki, kd, and C,
which makes performance highly parameter dependent, as we also observe
by simulation (see the variability of orange dots in Figure 2). MISD has
uniformly high overshoot, since kn

i > 1 is multiplied by a large constant C
and thus performs poorly. Finally, Oja uses an AISD rule with a weight-
dependent squared decay; this decay cancels out the additive increase term

Optimizing Network Flow Using Synaptic Plasticity Rules 1219

Table 2: Analysis of Overshoot of Weight-Update Algorithms.

Transient Aggressive Aggressive
Rule Overshoot Balanced (n) Increase (n) Decrease (n)

AIMD 2nki + C(kd − 1) 0.5 (250) 101 (3) 0.1 (450)
AISD 2(nki − kd) 1.0 (5) 196 (1) 1.0 (100)
MIMD C(kdkn

i − 1) 72.8 (8) 126 (2) 84.6 (25)
MISD C(kn

i − 1) 95.6 (1) 494 (1) 90.2 (2)
OJA Undershoots −1 (∞) −1 (∞) −1 (∞)
OPT 0 (∞) 0 (∞) 0 (∞) 0 (∞)

Notes: Analytic (left) and simulated (right) overshoot values of each al-
gorithm using C = 1000. The variable n corresponds to the number of
time steps before congestion re-occurs. The Oja-based algorithm always
undershoots for the simple two-flow case; however, a closed-form solu-
tion appears difficult to derive because the algorithm is dependent on
edge traffic. The optimal solution (OPT) has zero overshoot. For simula-
tions of other algorithms, we selected three sets of parameters: Balanced:
additive (ki = 1.0, kd = 5.0), multiplicative (ki = 1.1, kd = 0.5). Aggressive
increase: additive (ki = 100.0, kd = 5.0), multiplicative (ki = 1.5, kd = 0.5).
Aggressive decrease: additive (ki = 1.0, kd = 100.0), multiplicative (ki =
1.1, kd = 0.1).

as the traffic of flow 1 and 2 approaches C. This leads to performance
that always undershoots for this simple two-flow case, improving drop
and queue penalty over AISD; however, in practice, when many flows
concurrently compete and overshoot does occur (as in Figures 2 and 3), it
is limited by the weak decrease term, as the decay only doubles kd at best.

We also simulated the transient overshoot under the assumptions of the-
orems 1 to 4 using different parameter settings (see Table 2, right). These
simulations further validate the theorems, showing that AIMD overshoots
the least, while MIMD varies from the second best to second worst, de-
pending on ki and kd. Further analysis of each algorithm is provided in the
appendix.

3.3 Comparing Distributed Gradient Descent Algorithms in the Brain
and the Internet. Simulations and theory both suggest that AIMD achieves
a robust and well-balanced trade-off between bandwidth and drop or queue
penalties, with MIMD and Oja also performing comparably depending on
the parameters selected. This implies that these algorithms approach the
optimal global edge-weight distribution more quickly and accurately than
other distributed gradient descent algorithms, including MISD, AISD, bang-
bang, and max-send.

In the brain, the additive increase and multiplicative decrease rule
(AIMD) for LTP and LTD, respectively, has strong theoretical and exper-
imental support (see Table 1), particularly over MI and SD models. The

1220 J. Suen and S. Navlakha

AIMD algorithm is also very similar to the rule proposed by van Rossum
et al. (2000) and has been commonly referred to as the mixed-weight up-
date rule (Delgado et al., 2010). This rule, in neural network simulations,
has been shown to produce stable Hebbian learning compared to many
other rules (van Rossum et al., 2000; Billings & van Rossum, 2009).

While Oja was one type of weight-dependent rule, other rules have also
been proposed where a weak (i.e., low-weight) synapse that undergoes LTP
is strengthened by a greater amount than a strong synapse that undergoes
LTP, and vice versa for LTD (see Table 1). Prior work has also suggested
that individual synapses may have a “memory” that allows for more so-
phisticated update rules to be implemented, including history-dependent
updates (Lahiri & Ganguli, 2013). One such form of update, integral control
in engineering, uses the time integral of a variable from t = 0 to the present.
We show the general forms of these rules in Table 1 but do not explore them
further here.

Interestingly, in engineering, AIMD also lies at the heart of the most pop-
ular congestion control algorithm used on the Internet today: the transmis-
sion control protocol (TCP; Corless et al., 2016). In contrast to our per-link
model, congestion control on the Internet is performed on a global end-
to-end basis per flow, meaning that the source of each flow regulates its
transmission rate based on a binary feedback signal (called an ACK, or ac-
knowledgment) sent by the target. If there is a long delay before the ACK is
received (or if the ACK is never received at all), congestion is assumed, and
the source decreases its rate of sending data by a multiplicative constant
(often 0.5). Otherwise the source increases its rate by an additive constant
(often 1.0). TCP was also designed with the goal of converging to steady-
state flow rates over time in a gradient-descent-like manner (Shakkottai &
Srikant, 2007; Jose, Yan, Alizadeh, McKeown, & Katti, 2015). Thus, despite
different models and objectives, both the brain and the Internet may have
discovered a similar distributed algorithm for optimizing network activity
using sparse, local feedback.

4 Discussion

Our work connects distributed traffic flow control algorithms in engineered
networks to synaptic plasticity rules used to regulate activity in neural cir-
cuits. While we do not claim that there is a one-to-one mapping between
mechanisms of synaptic plasticity and flow control problems, we showed
how both problems can be viewed abstractly in terms of gradient descent
dynamics on global objectives, with simple local feedback. We performed
simulations and theoretical analyses of several edge-weight update rules
and found that the additive-increase multiplicative-decrease (AIMD) al-
gorithm performed the best in terms minimizing drops or queueing with
comparable bandwidth as other algorithms. This algorithm also matched
experimental data detailing the functional forms of LTP and LTD in the

Optimizing Network Flow Using Synaptic Plasticity Rules 1221

brain and on the Internet, suggesting a similar design principle used in bi-
ology and engineering. Further, these weight rules use limited (1-bit) local
communication and hence may be useful for implementing energy-efficient
and scalable flow control in other applications, including integrated circuits,
wireless networks, or neuromorphic computing.

There are many avenues for future work. First, other plasticity rules,
such as short-term plasticity, may be explored within our framework. Sec-
ond, in cases where source or receiver rates are fixed, the payload needs
to be routed over alternative paths (i.e., routes may change over time ba-
sic on traffic; Isa, Mohamed, & Yusoff, 2015). This requires that heavily
used edges become down-weighted and unused edges become more attrac-
tive, which effectively performs load balancing over all resources (edges)
in the network. Biologically, similar behavior is observed due to homeo-
static plasticity mechanisms, which may inspire algorithms for this prob-
lem. Third, these distributed gradient descent updates rules may be useful
in machine learning applications for nonstationary learning. Fourth, more
sophisticated weight and history-dependent update rules already explored
in engineering may provide insight into their form and function in the
brain. Overall, we hope our work inspires closer collaborations between
distributed computing theorists and neuroscientists (Navlakha et al., 2015).

Appendix: Analyzing Transient Response Times for AIMD, MIMD,
AISD, MISD, and Oja

In this appendix, we derive the transient overshoot of AIMD, MIMD, AISD,
and MISD.

Theorem 1 (overshoot of AIMD). The two-flow transient response of AIMD has
an overshoot that increases linearly with n but is reduced by a term proportional
to the capacity, C.

Proof. See the main text for the derivation. The overshoot is:

(Flow 1 + Flow 2) − C = (Ckd + nki + kd + nki) − C,

≈C
(
kd − 1

) + 2nki, (A.1)

assuming the single kd term is negligibly small. �

Theorem 2 (overshoot of MIMD). The two-flow transient response of MIMD is
highly parameter dependent. Based on kd and ki , the scaling of overshoot can be
dominated by C or by a power of n.

Proof. Following the proof of theorem 1 in the main text, the time evolution
will be:

1222 J. Suen and S. Navlakha

Time t Flow 1 Flow 2 Jamuv
(t)

−1 C 1 True
0 Ckd kd False
1 Ckdki kdki False
2 Ckdk2

i kdk2
i False

...
...

...
...

n Ckdkn
i kdkn

i True

The overshoot for MIMD is

(Flow 1 + Flow 2) − C = kdkn
i (C + 1) − C.

≈C(kdkn
i − 1), (A.2)

if C � 1. Thus, the overshoot shows a positive dependence on C (unlike
AIMD, which has a negative dependence on C) and a power dependence
on n. �

Theorem 3 (overshoot of AISD). The two-flow transient response of AISD in-
creases linearly with n but does not scale relative to the link capacity, C.

Proof. The time evolution will be:

Time t Flow 1 Flow 2 Jamuv
(t)

−1 C 1 True
0 C − kd 1 − kd False
1 C − kd + ki 1 − kd + ki False
2 C − kd + 2ki 1 − kd + 2ki False
...

...
...

...
n C − kd + nki 1 − kd + nki True

The overshoot for AISD is thus:

(Flow 1 + Flow 2) − C = 2(nki − kd). (A.3)

�

In our theorems, we ignore the constraint that W ≥ 1. This limit in our
implementation was due to integer rounding to ensure MISD links do
not get stuck at 0 weight; hence, the theorems we present here are more
general. If we apply this limit, it affects the weight of flow 2 at t = 0, which
should equal 1. In all cases except AISD, the difference is removed by the

Optimizing Network Flow Using Synaptic Plasticity Rules 1223

approximation at the end. For AISD, equation A.3 becomes 2nki − kd, a
negligible change when n � 1.

Theorem 4 (overshoot of MISD). The two-flow transient response of MISD
increases to the power of n and as a product with C.

Proof. The time evolution will be:

Time t Flow 1 Flow 2 Jamuv
(t)

−1 C 1 True
0 C − kd 1 − kd False
1 (C − kd)ki (1 − kd)ki False
2 (C − kd)k2

i (1 − kd)k2
i False

...
...

...
...

n (C − kd)kn
i (1 − kd)kn

i True

The overshoot for MISD is thus

(Flow 1 + Flow 2) − C = kn
i (C − 2kd + 1) − C

≈C
(
kn

i − 1
)
, (A.4)

since C is large relative to 2kd + 1. �

General conclusions can be drawn from these relations that correlate
well with the simulation results. We can bound the overshoot of both AI
algorithms (AIMD and AISD) by |F |ki, where |F | is the number of flows
that must share a link because each individual flow will not overshoot
more than one ki. The more precise overshoot of AIMD, C(kd − 1) + 2nki
(theorem 1 main text), shows a significant capacity-dependent stabilizing
factor, as C

(
kd − 1

)
, which is negative, counteracts the factor of n. When we

repeated the AIMD flow simulation (see Table 2) with C = 50 (as opposed
to C = 1000), the overshoot of AIMD increased, as expected.

AISD has a conservative increase similar to AIMD but suffers because
subtractive decrease slowly adjusts when available bandwidth decreases.
While some parameter settings may overcome this, it is difficult in practice
to tune the SD constant to be effective in all scenarios. Simulation results
support this observation, showing a large drop penalty during rush hour
and a slow recovery after traffic subsides (see Figure 3). For AISD, if multiple
flows share a link, transient overshoot is approximately |F |nki. When a
large number of flows share a link (e.g., millions of flows on an Internet
backbone), overshoot will be very large.

The Oja-inspired algorithm is based on AISD but subtracts a normal-
ized traffic-dependent quadratic term. This attempts to correct for the slow
LTD decrease of AISD, especially at high weights, and we do observe

1224 J. Suen and S. Navlakha

improvement over AISD in our network simulations. However, we also
observe larger drop and queue penalties for Oja compared to AIMD due to
its still rather conservative decrease following congestion. The decay term
can also completely counteract the AI contribution when Duv → √

WC (i.e.,
when edge utilization is high), thus potentially leading to edge underuti-
lization. This convergence to a weight less than C causes LTD never to be
triggered (hence, the ∞ term in Table 2 for this simple two-flow case). The
lack of periodic overshooting appears to be key for the drop and queue
penalty improvements over AISD.

The overshoot and performance of MIMD are highly dependent on C
relative to the ki and kd parameters, explaining the scattered performance of
MIMD in Figure 2. With optimal parameter tuning, MIMD can be made to
operate well under transient behavior, which is seen when certain MIMD
points reach the AIMD region.

MISD can easily be seen as worse than AISD in terms of drop or queue
penalties in our simulations (see Figures 2 and 3). Intuitively, this is because
MISD reduces slowly (subtractively) but increases aggressively (multiplica-
tively). The transient overshoot analysis for MISD shows that it increases
as a product of C and a constant to the power of n. Since the decrease term
is weak, n will be small, meaning that poor performance will be especially
seen for high-capacity links.

A.1 Algorithm Performance with Additional Topologies. We per-
formed simulations with 10-fold larger networks (N = 1000), with both
uniform and scale-free degree distributions. The scale-free topology was
derived using the Barabasi-Albert preferential attachment model (Barabasi
& Albert, 1999). When generating graphs using this model, new nodes are
connected to existing nodes with probability proportional to their existing
degree. This mechanism has been shown to produce a power-law degree
distribution. We found no qualitative change in our conclusions here (see
Figure 4) compared to the results discussed in the main text. Thus, our
results are applicable to at least two classes of network topologies: uniform
(inspired by grid-like road networks) and power law (Internet). This invari-
ance is likely due to the distributed nature of the flow control algorithms.
The overshoot theorems exemplify this, having no assumptions on network
size and topology.

A.2 Changes in Edge Weights (W) under Dynamic Traffic. To study
how W (edge weights) changed under the rush hour protocol of Figure 3,
we plotted the average W (computed in 10 time-step bins) for all used
source-to-router links in the network (see Figure 5). We focused on source-
router links as these primarily control the amount of new data injected into
the network in each time step. Error bars in Figure 5 correspond to the
standard error of the average over 10 trials. Both MIMD and AIMD reduce

Optimizing Network Flow Using Synaptic Plasticity Rules 1225

Figure 4: Performance using additional topologies. Comparison of all the algo-
rithms using a scale-free degree distribution (A) and a uniform degree distribu-
tion (B) with 1000 nodes.

Figure 5: Changes in the edge weight under the dynamic traffic protocol. Error
bars correspond to the standard error of the average over 10 trials.

edge weights in response to rush hour, showing that they handle excess
traffic by reducing bandwidth instead of dropping data. The characteristic
oscillatory probing nature of both algorithms is also apparent. In both cases,
the range of W in each time step is narrowly bounded, indicating network
stability.

Acknowledgments

J.Y.S. and S.N. thank Alex Lang and Ben Regner for helpful comments on
the article. S.N. thanks the Army Research Office (grant DOD W911NF-17-
1-0045) for funding support.

1226 J. Suen and S. Navlakha

References

Ahn, J. S., Danzig, P. B., Liu, Z., & Yan, L. (1995). Evaluation of TCP Vegas: Emulation
and experiment. SIGCOMM Comput. Commun. Rev., 25(4), 185–195.

Bansal, D., & Balakrishnan, H. (2001). Binomial congestion control algorithms. In
Proceedings of IEEE Infocom 2001. Piscataway, NJ: IEEE.

Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks.
Science, 286(5439), 509–512.

Bengio, Y., Lee, D., Bornschein, J., & Lin, Z. (2015). Towards biologically plausible deep
learning. arXiv:abs/1502.04156

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., & Wu, Y. (2015). STDP as presynaptic
activity times rate of change of postsynaptic activity. arXiv:abs/1509.05936

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci., 18(24), 10464–10472.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development
of neuron selectivity: Orientation specificity and binocular interaction in visual
cortex. J. Neurosci., 2(1), 32–48.

Billings, G., & van Rossum, M. C. (2009). Memory retention and spike-timing-
dependent plasticity. J. Neurophysiol., 101(6), 2775–2788.

Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability
and feedback control at single synapses. Nat. Rev. Neurosci., 10(5), 373–383.

CAIDA AS Relationships Dataset (Feb. 1, 2016), http://www.caida.org/data/as
-relationships

Chiu, D.-M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Comput. Netw. ISDN Syst., 17(1),
1–14.

Cooper, L. N., & Bear, M. F. (2012). The BCM theory of synapse modification at 30:
Interaction of theory with experiment. Nat. Rev. Neurosci., 13(11), 798–810.

Corless, M., King, C., Shorten, R., & Wirth, F. (2016). AIMD dynamics and distributed
resource allocation. Philadelphia: Society for Industrial & Applied Mathematics.

Corless, M., & Shorten, R. (2012). Deterministic and stochastic convergence prop-
erties of AIMD algorithms with nonlinear back-off functions. Automatica, 48(7),
1291–1299.

Costa, R. P., Froemke, R. C., Sjostrom, P. J., & van Rossum, M. C. (2015). Unified pre-
and postsynaptic long-term plasticity enables reliable and flexible learning. Elife,
4.

Cota, É., de Morais Amory, A., & Lubaszewski, M. (2012). Reliability, availability and
serviceability of networks-on-chip. New York: Springer Science.

Delgado, J. Y., Gomez-Gonzalez, J. F., & Desai, N. S. (2010). Pyramidal neuron con-
ductance state gates spike-timing-dependent plasticity. J. Neurosci., 30(47), 15713–
15725.

Feng, J., & Tuckwell, H. C. (2003). Optimal control of neuronal activity. Phys. Rev.
Lett., 91(1), 018101.

Fitzsimonds, R. M., Song, H. J., & Poo, M. M. (1997). Propagation of activity-
dependent synaptic depression in simple neural networks. Nature, 388(6641),
439–448.

Optimizing Network Flow Using Synaptic Plasticity Rules 1227

Fortz, B., & Thorup, M. (2000). Internet traffic engineering by optimizing OSPF
weights. In Proceedings of the Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies (vol. 2, pp. 519–528). Piscataway, NJ: IEEE.

Froemke, R. C., Debanne, D., & Bi, G. Q. (2010). Temporal modulation of spike-
timing-dependent plasticity. Front. Synaptic Neurosci., 2, 19.

Gavoille, C. (2001). Routing in distributed networks: Overview and open problems.
SIGACT News, 32(1), 36–52.

Gayme, D., & Topcu, U. (2011). Optimal power flow with distributed energy storage
dynamics. In Proceedings of the 2011 American Control Conference (pp. 1536–1542).
Piscataway, NJ: IEEE.

Ha, S., Rhee, I., & Xu, L. (2008). Cubic: A new TCP-friendly high-speed TCP variant.
SIGOPS Oper. Syst. Rev., 42(5), 64–74.

Isa, N., Mohamed, A., & Yusoff, M. (2015). Implementation of dynamic traffic routing
for traffic congestion: A review. In M. Berry, A. Mohamed, & B. W. Yap (Eds.),
Soft computing in data science. New York: Springer-Verlag.

Jin, S., Guo, L., Matta, I., & Bestavros, A. (2002). A spectrum of TCP-friendly window-
based congestion control algorithms (Technical Report, Computer Science Depart-
ment). Boston: Boston University.

Jose, L., Yan, L., Alizadeh, M., McKeown, G. V. N., & Katti, S. (2015). High speed net-
works need proactive congestion control. In Proceedings of the 14th ACM Workshop
on Hot Topics in Networks (pp. 14:1–14:7). New York: ACM.

Kelly, T. (2003). Scalable TCP: Improving performance in highspeed wide area net-
works. SIGCOMM Comput. Commun. Rev., 33(2), 83–91.

Kepecs, A., van Rossum, M. C., Song, S., & Tegner, J. (2002). Spike-timing-dependent
plasticity: Common themes and divergent vistas. Biol. Cybern., 87(5–6), 446–458.

Kopec, C. D., Li, B., Wei, W., Boehm, J., & Malinow, R. (2006). Glutamate receptor
exocytosis and spine enlargement during chemically induced long-term potenti-
ation. J. Neurosci., 26(7), 2000–2009.

Kramar, E. A., Babayan, A. H., Gavin, C. F., Cox, C. D., Jafari, M., Gall, C. M., . . .

Lynch, G. (2012). Synaptic evidence for the efficacy of spaced learning. Proc. Natl.
Acad. Sci. U.S.A., 109(13), 5121–5126.

Lahiri, S., & Ganguli, S. (2013). A memory frontier for complex synapses. In C. J.
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.),
Advances in neural information processing systems, 26 (pp. 1034–1042). Red Hook,
NY: Curran.

Lazar, A. (1983). Optimal flow control of a class of queueing networks in equilibrium.
IEEE Transactions on Automatic Control, 28(11), 1001–1007.

Li, F., Wu, B., Xu, L., Shi, C., & Shi, J. (2014). A fast distributed stochastic gradient
descent algorithm for matrix factorization. In Proc. of the Intl. Workshop on Big
Data, Streams and Heterogeneous Source Mining (pp. 77–87).

Markram, H., Gerstner, W., & Sjostrom, P. J. (2012). Spike-timing-dependent plastic-
ity: A comprehensive overview. Front. Synaptic Neurosci., 4, 2.

Mateos-Nunez, D., & Cortes, J. (2013). Noise-to-state exponentially stable distributed
convex optimization on weight-balanced digraphs. In Proceedings of the IEEE Conf.
on Decision and Control (pp. 2781–2786). Piscataway, NJ: IEEE.

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of
synaptic plasticity based on spike timing. Biol. Cybern., 98(6), 459–478.

1228 J. Suen and S. Navlakha

Navlakha, S., Barth, A. L., & Bar-Joseph, Z. (2015). Decreasing-rate pruning optimizes
the construction of efficient and robust distributed networks. PLoS Comput. Biol.,
11(7), e1004347.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology, 15(3), 267–273.

Osogami, T., & Otsuka, M. (2015). Seven neurons memorizing sequences of alpha-
betical images via spike-timing dependent plasticity. Sci. Rep., 5, 14149.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., & Saleh, R. (2005). Performance evalu-
ation and design trade-offs for network-on-chip interconnect architectures. IEEE
Trans. Comput., 54(8), 1025–1040.

Royer, E. M., & Toh, C.-K. (1999). A review of current routing protocols for ad hoc
mobile wireless networks. IEEE Personal Communications, 6(2), 46–55.

Shakkottai, S., & Srikant, R. (2007). Network optimization and control. Found. Trends
Netw., 2(3), 271–379.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nat. Neurosci., 3(9), 919–926.

van Rossum, M. C., Bi, G. Q., & Turrigiano, G. G. (2000). Stable Hebbian learning
from spike timing-dependent plasticity. J. Neurosci., 20(23), 8812–8821.

Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance
of excitation and inhibition in spiking networks. Nat. Neurosci., 12(4), 483–491.

Wang, J., Li, L., Low, S. H., & Doyle, J. C. (2003). Can shortest-path routing and TCP
maximize utility? In Proceedings of the Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications (vol. 3, pp. 2049–2056). Piscataway, NJ: IEEE.

Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neu-
ron’s cool in a fluctuating world. Front. Synaptic Neurosci., 2, 5.

Yang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Front. Synaptic Neu-
rosci., 5, 8.

Yuan, K., Ling, Q., & Yin, W. (2016). On the convergence of decentralized gradient
descent. SIAM Journal on Optimization, 26(3), 1835–1854.

Zanutto, B. S., & Staddon, J. E. (2007). Bang-bang control of feeding: Role of hypotha-
lamic and satiety signals. PLoS Comput. Biol., 3(5), e97.

Zhou, Q., Homma, K. J., & Poo, M. M. (2004). Shrinkage of dendritic spines associated
with long-term depression of hippocampal synapses. Neuron, 44(5), 749–757.

Zinkevich, M., Weimer, M., Li, L., & Smola, A. (2010). Parallelized stochastic gradient
descent. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A.
Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 2595–
2603). Red Hook, NY: Curran.

Received September 10, 2016; accepted December 5, 2016.

